Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem7N Structured version   Visualization version   GIF version

Theorem hdmaprnlem7N 36666
Description: Part of proof of part 12 in [Baer] p. 49 line 19, s-St G(u'+s) = P*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
hdmaprnlem1.t2 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
hdmaprnlem1.p + = (+g𝑈)
hdmaprnlem1.pt (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
Assertion
Ref Expression
hdmaprnlem7N (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))

Proof of Theorem hdmaprnlem7N
StepHypRef Expression
1 hdmaprnlem1.d . . 3 𝐷 = (Base‘𝐶)
2 hdmaprnlem1.a . . 3 = (+g𝐶)
3 eqid 2621 . . 3 (-g𝐶) = (-g𝐶)
4 hdmaprnlem1.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 hdmaprnlem1.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 hdmaprnlem1.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
74, 5, 6lcdlmod 36400 . . . 4 (𝜑𝐶 ∈ LMod)
8 lmodabl 18850 . . . 4 (𝐶 ∈ LMod → 𝐶 ∈ Abel)
97, 8syl 17 . . 3 (𝜑𝐶 ∈ Abel)
10 hdmaprnlem1.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 hdmaprnlem1.v . . . 4 𝑉 = (Base‘𝑈)
12 hdmaprnlem1.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
13 hdmaprnlem1.ue . . . 4 (𝜑𝑢𝑉)
144, 10, 11, 5, 1, 12, 6, 13hdmapcl 36641 . . 3 (𝜑 → (𝑆𝑢) ∈ 𝐷)
15 hdmaprnlem1.se . . . 4 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
1615eldifad 3572 . . 3 (𝜑𝑠𝐷)
17 hdmaprnlem1.n . . . . 5 𝑁 = (LSpan‘𝑈)
18 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
19 hdmaprnlem1.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
20 hdmaprnlem1.ve . . . . 5 (𝜑𝑣𝑉)
21 hdmaprnlem1.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
22 hdmaprnlem1.un . . . . 5 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
23 hdmaprnlem1.q . . . . 5 𝑄 = (0g𝐶)
24 hdmaprnlem1.o . . . . 5 0 = (0g𝑈)
25 hdmaprnlem1.t2 . . . . 5 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
264, 10, 11, 17, 5, 18, 19, 12, 6, 15, 20, 21, 13, 22, 1, 23, 24, 2, 25hdmaprnlem4tN 36663 . . . 4 (𝜑𝑡𝑉)
274, 10, 11, 5, 1, 12, 6, 26hdmapcl 36641 . . 3 (𝜑 → (𝑆𝑡) ∈ 𝐷)
281, 2, 3, 9, 14, 16, 27, 9, 14, 16, 27ablpnpcan 18165 . 2 (𝜑 → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) = (𝑠(-g𝐶)(𝑆𝑡)))
291, 2lmodvacl 18817 . . . . 5 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
307, 14, 16, 29syl3anc 1323 . . . 4 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
31 eqid 2621 . . . . 5 (LSubSp‘𝐶) = (LSubSp‘𝐶)
321, 31, 18lspsncl 18917 . . . 4 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
337, 30, 32syl2anc 692 . . 3 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
341, 18lspsnid 18933 . . . 4 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → ((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
357, 30, 34syl2anc 692 . . 3 (𝜑 → ((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
361, 2lmodvacl 18817 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷 ∧ (𝑆𝑡) ∈ 𝐷) → ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷)
377, 14, 27, 36syl3anc 1323 . . . . 5 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷)
381, 18lspsnid 18933 . . . . 5 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) (𝑆𝑡)) ∈ 𝐷) → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
397, 37, 38syl2anc 692 . . . 4 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
40 hdmaprnlem1.p . . . . 5 + = (+g𝑈)
41 hdmaprnlem1.pt . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
424, 10, 11, 17, 5, 18, 19, 12, 6, 15, 20, 21, 13, 22, 1, 23, 24, 2, 25, 40, 41hdmaprnlem6N 36665 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝐿‘{((𝑆𝑢) (𝑆𝑡))}))
4339, 42eleqtrrd 2701 . . 3 (𝜑 → ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
443, 31lssvsubcl 18884 . . 3 (((𝐶 ∈ LMod ∧ (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶)) ∧ (((𝑆𝑢) 𝑠) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}) ∧ ((𝑆𝑢) (𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))) → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
457, 33, 35, 43, 44syl22anc 1324 . 2 (𝜑 → (((𝑆𝑢) 𝑠)(-g𝐶)((𝑆𝑢) (𝑆𝑡))) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
4628, 45eqeltrrd 2699 1 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  cdif 3557  {csn 4155  cfv 5857  (class class class)co 6615  Basecbs 15800  +gcplusg 15881  0gc0g 16040  -gcsg 17364  Abelcabl 18134  LModclmod 18803  LSubSpclss 18872  LSpanclspn 18911  HLchlt 34156  LHypclh 34789  DVecHcdvh 35886  LCDualclcd 36394  mapdcmpd 36432  HDMapchdma 36601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-riotaBAD 33758
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-ot 4164  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-tpos 7312  df-undef 7359  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-sca 15897  df-vsca 15898  df-0g 16042  df-mre 16186  df-mrc 16187  df-acs 16189  df-preset 16868  df-poset 16886  df-plt 16898  df-lub 16914  df-glb 16915  df-join 16916  df-meet 16917  df-p0 16979  df-p1 16980  df-lat 16986  df-clat 17048  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-grp 17365  df-minusg 17366  df-sbg 17367  df-subg 17531  df-cntz 17690  df-oppg 17716  df-lsm 17991  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-oppr 18563  df-dvdsr 18581  df-unit 18582  df-invr 18612  df-dvr 18623  df-drng 18689  df-lmod 18805  df-lss 18873  df-lsp 18912  df-lvec 19043  df-lsatoms 33782  df-lshyp 33783  df-lcv 33825  df-lfl 33864  df-lkr 33892  df-ldual 33930  df-oposet 33982  df-ol 33984  df-oml 33985  df-covers 34072  df-ats 34073  df-atl 34104  df-cvlat 34128  df-hlat 34157  df-llines 34303  df-lplanes 34304  df-lvols 34305  df-lines 34306  df-psubsp 34308  df-pmap 34309  df-padd 34601  df-lhyp 34793  df-laut 34794  df-ldil 34909  df-ltrn 34910  df-trl 34965  df-tgrp 35550  df-tendo 35562  df-edring 35564  df-dveca 35810  df-disoa 35837  df-dvech 35887  df-dib 35947  df-dic 35981  df-dih 36037  df-doch 36156  df-djh 36203  df-lcdual 36395  df-mapd 36433  df-hvmap 36565  df-hdmap1 36602  df-hdmap 36603
This theorem is referenced by:  hdmaprnlem9N  36668
  Copyright terms: Public domain W3C validator