MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblneg Structured version   Visualization version   GIF version

Theorem iblneg 23292
Description: The negative of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgcnval.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnval.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
iblneg (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iblneg
StepHypRef Expression
1 itgcnval.2 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 23257 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgcnval.1 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 23127 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
65renegd 13743 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
76breq2d 4589 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ (ℜ‘-𝐵) ↔ 0 ≤ -(ℜ‘𝐵)))
87, 6ifbieq1d 4058 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) = if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0))
98mpteq2dva 4666 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)))
105iblcn 23288 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
111, 10mpbid 220 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1211simpld 473 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
135recld 13728 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
1413iblre 23283 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)))
1512, 14mpbid 220 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1))
1615simprd 477 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)
179, 16eqeltrd 2687 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) ∈ 𝐿1)
186negeqd 10126 . . . . . . . 8 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = --(ℜ‘𝐵))
1913recnd 9924 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
2019negnegd 10234 . . . . . . . 8 ((𝜑𝑥𝐴) → --(ℜ‘𝐵) = (ℜ‘𝐵))
2118, 20eqtrd 2643 . . . . . . 7 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = (ℜ‘𝐵))
2221breq2d 4589 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ -(ℜ‘-𝐵) ↔ 0 ≤ (ℜ‘𝐵)))
2322, 21ifbieq1d 4058 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) = if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0))
2423mpteq2dva 4666 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)))
2515simpld 473 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1)
2624, 25eqeltrd 2687 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) ∈ 𝐿1)
275negcld 10230 . . . . 5 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
2827recld 13728 . . . 4 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) ∈ ℝ)
2928iblre 23283 . . 3 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) ∈ 𝐿1)))
3017, 26, 29mpbir2and 958 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1)
315imnegd 13744 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
3231breq2d 4589 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ (ℑ‘-𝐵) ↔ 0 ≤ -(ℑ‘𝐵)))
3332, 31ifbieq1d 4058 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) = if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0))
3433mpteq2dva 4666 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)))
3511simprd 477 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
365imcld 13729 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
3736iblre 23283 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)))
3835, 37mpbid 220 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1))
3938simprd 477 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)
4034, 39eqeltrd 2687 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) ∈ 𝐿1)
4131negeqd 10126 . . . . . . . 8 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = --(ℑ‘𝐵))
4236recnd 9924 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
4342negnegd 10234 . . . . . . . 8 ((𝜑𝑥𝐴) → --(ℑ‘𝐵) = (ℑ‘𝐵))
4441, 43eqtrd 2643 . . . . . . 7 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = (ℑ‘𝐵))
4544breq2d 4589 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ -(ℑ‘-𝐵) ↔ 0 ≤ (ℑ‘𝐵)))
4645, 44ifbieq1d 4058 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) = if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0))
4746mpteq2dva 4666 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)))
4838simpld 473 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1)
4947, 48eqeltrd 2687 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) ∈ 𝐿1)
5027imcld 13729 . . . 4 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) ∈ ℝ)
5150iblre 23283 . . 3 (𝜑 → ((𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) ∈ 𝐿1)))
5240, 49, 51mpbir2and 958 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)
5327iblcn 23288 . 2 (𝜑 → ((𝑥𝐴 ↦ -𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)))
5430, 52, 53mpbir2and 958 1 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 1976  ifcif 4035   class class class wbr 4577  cmpt 4637  cfv 5790  0cc0 9792  cle 9931  -cneg 10118  cre 13631  cim 13632  MblFncmbf 23106  𝐿1cibl 23109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-disj 4548  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-ofr 6773  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-q 11621  df-rp 11665  df-xadd 11779  df-ioo 12006  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-sum 14211  df-xmet 19506  df-met 19507  df-ovol 22957  df-vol 22958  df-mbf 23111  df-itg1 23112  df-itg2 23113  df-ibl 23114  df-0p 23160
This theorem is referenced by:  itgneg  23293  iblsub  23311  itgsub  23315  iblsubnc  32437  itgsubnc  32438
  Copyright terms: Public domain W3C validator