MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem3 Structured version   Visualization version   GIF version

Theorem icccmplem3 22717
Description: Lemma for icccmp 22718. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
icccmp.3 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
icccmp.4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
icccmp.5 (𝜑𝐴 ∈ ℝ)
icccmp.6 (𝜑𝐵 ∈ ℝ)
icccmp.7 (𝜑𝐴𝐵)
icccmp.8 (𝜑𝑈𝐽)
icccmp.9 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
Assertion
Ref Expression
icccmplem3 (𝜑𝐵𝑆)
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐴,𝑧   𝑥,𝐷   𝑥,𝑇,𝑧   𝑧,𝐽   𝑥,𝑈,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐷(𝑧)   𝑆(𝑥,𝑧)   𝐽(𝑥)

Proof of Theorem icccmplem3
Dummy variables 𝑢 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.9 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
2 icccmp.4 . . . . . . . 8 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
3 ssrab2 3761 . . . . . . . 8 {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} ⊆ (𝐴[,]𝐵)
42, 3eqsstri 3709 . . . . . . 7 𝑆 ⊆ (𝐴[,]𝐵)
5 icccmp.5 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
6 icccmp.6 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
7 iccssre 12337 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
85, 6, 7syl2anc 696 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
94, 8syl5ss 3688 . . . . . 6 (𝜑𝑆 ⊆ ℝ)
10 icccmp.1 . . . . . . . . 9 𝐽 = (topGen‘ran (,))
11 icccmp.2 . . . . . . . . 9 𝑇 = (𝐽t (𝐴[,]𝐵))
12 icccmp.3 . . . . . . . . 9 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
13 icccmp.7 . . . . . . . . 9 (𝜑𝐴𝐵)
14 icccmp.8 . . . . . . . . 9 (𝜑𝑈𝐽)
1510, 11, 12, 2, 5, 6, 13, 14, 1icccmplem1 22715 . . . . . . . 8 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
1615simpld 477 . . . . . . 7 (𝜑𝐴𝑆)
17 ne0i 3997 . . . . . . 7 (𝐴𝑆𝑆 ≠ ∅)
1816, 17syl 17 . . . . . 6 (𝜑𝑆 ≠ ∅)
1915simprd 482 . . . . . . 7 (𝜑 → ∀𝑦𝑆 𝑦𝐵)
20 breq2 4732 . . . . . . . . 9 (𝑣 = 𝐵 → (𝑦𝑣𝑦𝐵))
2120ralbidv 3056 . . . . . . . 8 (𝑣 = 𝐵 → (∀𝑦𝑆 𝑦𝑣 ↔ ∀𝑦𝑆 𝑦𝐵))
2221rspcev 3381 . . . . . . 7 ((𝐵 ∈ ℝ ∧ ∀𝑦𝑆 𝑦𝐵) → ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣)
236, 19, 22syl2anc 696 . . . . . 6 (𝜑 → ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣)
24 suprcl 11064 . . . . . 6 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣) → sup(𝑆, ℝ, < ) ∈ ℝ)
259, 18, 23, 24syl3anc 1407 . . . . 5 (𝜑 → sup(𝑆, ℝ, < ) ∈ ℝ)
26 suprub 11065 . . . . . 6 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣) ∧ 𝐴𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < ))
279, 18, 23, 16, 26syl31anc 1410 . . . . 5 (𝜑𝐴 ≤ sup(𝑆, ℝ, < ))
28 suprleub 11070 . . . . . . 7 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣) ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑦𝑆 𝑦𝐵))
299, 18, 23, 6, 28syl31anc 1410 . . . . . 6 (𝜑 → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑦𝑆 𝑦𝐵))
3019, 29mpbird 247 . . . . 5 (𝜑 → sup(𝑆, ℝ, < ) ≤ 𝐵)
31 elicc2 12320 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵) ↔ (sup(𝑆, ℝ, < ) ∈ ℝ ∧ 𝐴 ≤ sup(𝑆, ℝ, < ) ∧ sup(𝑆, ℝ, < ) ≤ 𝐵)))
325, 6, 31syl2anc 696 . . . . 5 (𝜑 → (sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵) ↔ (sup(𝑆, ℝ, < ) ∈ ℝ ∧ 𝐴 ≤ sup(𝑆, ℝ, < ) ∧ sup(𝑆, ℝ, < ) ≤ 𝐵)))
3325, 27, 30, 32mpbir3and 1318 . . . 4 (𝜑 → sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵))
341, 33sseldd 3678 . . 3 (𝜑 → sup(𝑆, ℝ, < ) ∈ 𝑈)
35 eluni2 4516 . . 3 (sup(𝑆, ℝ, < ) ∈ 𝑈 ↔ ∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢)
3634, 35sylib 208 . 2 (𝜑 → ∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢)
3714sselda 3677 . . . . 5 ((𝜑𝑢𝑈) → 𝑢𝐽)
3812rexmet 22684 . . . . . . 7 𝐷 ∈ (∞Met‘ℝ)
39 eqid 2692 . . . . . . . . . 10 (MetOpen‘𝐷) = (MetOpen‘𝐷)
4012, 39tgioo 22689 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘𝐷)
4110, 40eqtri 2714 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
4241mopni2 22388 . . . . . . 7 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑢𝐽 ∧ sup(𝑆, ℝ, < ) ∈ 𝑢) → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
4338, 42mp3an1 1492 . . . . . 6 ((𝑢𝐽 ∧ sup(𝑆, ℝ, < ) ∈ 𝑢) → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
4443ex 449 . . . . 5 (𝑢𝐽 → (sup(𝑆, ℝ, < ) ∈ 𝑢 → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢))
4537, 44syl 17 . . . 4 ((𝜑𝑢𝑈) → (sup(𝑆, ℝ, < ) ∈ 𝑢 → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢))
465ad2antrr 764 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐴 ∈ ℝ)
476ad2antrr 764 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐵 ∈ ℝ)
4813ad2antrr 764 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐴𝐵)
4914ad2antrr 764 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑈𝐽)
501ad2antrr 764 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → (𝐴[,]𝐵) ⊆ 𝑈)
51 simplr 809 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑢𝑈)
52 simprl 811 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑤 ∈ ℝ+)
53 simprr 813 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
54 eqid 2692 . . . . . 6 sup(𝑆, ℝ, < ) = sup(𝑆, ℝ, < )
55 eqid 2692 . . . . . 6 if((sup(𝑆, ℝ, < ) + (𝑤 / 2)) ≤ 𝐵, (sup(𝑆, ℝ, < ) + (𝑤 / 2)), 𝐵) = if((sup(𝑆, ℝ, < ) + (𝑤 / 2)) ≤ 𝐵, (sup(𝑆, ℝ, < ) + (𝑤 / 2)), 𝐵)
5610, 11, 12, 2, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55icccmplem2 22716 . . . . 5 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐵𝑆)
5756rexlimdvaa 3102 . . . 4 ((𝜑𝑢𝑈) → (∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢𝐵𝑆))
5845, 57syld 47 . . 3 ((𝜑𝑢𝑈) → (sup(𝑆, ℝ, < ) ∈ 𝑢𝐵𝑆))
5958rexlimdva 3101 . 2 (𝜑 → (∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢𝐵𝑆))
6036, 59mpd 15 1 (𝜑𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1564  wcel 2071  wne 2864  wral 2982  wrex 2983  {crab 2986  cin 3647  wss 3648  c0 3991  ifcif 4162  𝒫 cpw 4234   cuni 4512   class class class wbr 4728   × cxp 5184  ran crn 5187  cres 5188  ccom 5190  cfv 5969  (class class class)co 6733  Fincfn 8040  supcsup 8430  cr 10016   + caddc 10020   < clt 10155  cle 10156  cmin 10347   / cdiv 10765  2c2 11151  +crp 11914  (,)cioo 12257  [,]cicc 12260  abscabs 14062  t crest 16172  topGenctg 16189  ∞Metcxmt 19822  ballcbl 19824  MetOpencmopn 19827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-cnex 10073  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-mulcom 10081  ax-addass 10082  ax-mulass 10083  ax-distr 10084  ax-i2m1 10085  ax-1ne0 10086  ax-1rid 10087  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092  ax-pre-ltadd 10093  ax-pre-mulgt0 10094  ax-pre-sup 10095
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-reu 2989  df-rmo 2990  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-int 4552  df-iun 4598  df-br 4729  df-opab 4789  df-mpt 4806  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-pred 5761  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-riota 6694  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-om 7151  df-1st 7253  df-2nd 7254  df-wrecs 7495  df-recs 7556  df-rdg 7594  df-1o 7648  df-oadd 7652  df-er 7830  df-map 7944  df-en 8041  df-dom 8042  df-sdom 8043  df-fin 8044  df-sup 8432  df-inf 8433  df-pnf 10157  df-mnf 10158  df-xr 10159  df-ltxr 10160  df-le 10161  df-sub 10349  df-neg 10350  df-div 10766  df-nn 11102  df-2 11160  df-3 11161  df-n0 11374  df-z 11459  df-uz 11769  df-q 11871  df-rp 11915  df-xneg 12028  df-xadd 12029  df-xmul 12030  df-ioo 12261  df-icc 12264  df-seq 12885  df-exp 12944  df-cj 13927  df-re 13928  df-im 13929  df-sqrt 14063  df-abs 14064  df-topgen 16195  df-psmet 19829  df-xmet 19830  df-met 19831  df-bl 19832  df-mopn 19833  df-top 20790  df-topon 20807  df-bases 20841
This theorem is referenced by:  icccmp  22718
  Copyright terms: Public domain W3C validator