MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpnlem1 Structured version   Visualization version   GIF version

Theorem infpnlem1 15545
Description: Lemma for infpn 15547. The smallest divisor (greater than 1) 𝑀 of 𝑁! + 1 is a prime greater than 𝑁. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1 𝐾 = ((!‘𝑁) + 1)
Assertion
Ref Expression
infpnlem1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → (𝑁 < 𝑀 ∧ ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)))))
Distinct variable groups:   𝑗,𝑁   𝑗,𝑀   𝑗,𝐾

Proof of Theorem infpnlem1
StepHypRef Expression
1 nnre 10978 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
2 nnre 10978 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3 lenlt 10067 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
41, 2, 3syl2anr 495 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
54adantr 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
6 nnnn0 11250 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7 facndiv 13022 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (((!‘𝑁) + 1) / 𝑀) ∈ ℤ)
8 infpnlem.1 . . . . . . . . . . 11 𝐾 = ((!‘𝑁) + 1)
98oveq1i 6620 . . . . . . . . . 10 (𝐾 / 𝑀) = (((!‘𝑁) + 1) / 𝑀)
10 nnz 11350 . . . . . . . . . 10 ((𝐾 / 𝑀) ∈ ℕ → (𝐾 / 𝑀) ∈ ℤ)
119, 10syl5eqelr 2703 . . . . . . . . 9 ((𝐾 / 𝑀) ∈ ℕ → (((!‘𝑁) + 1) / 𝑀) ∈ ℤ)
127, 11nsyl 135 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (𝐾 / 𝑀) ∈ ℕ)
136, 12sylanl1 681 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (𝐾 / 𝑀) ∈ ℕ)
1413expr 642 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (𝑀𝑁 → ¬ (𝐾 / 𝑀) ∈ ℕ))
155, 14sylbird 250 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (¬ 𝑁 < 𝑀 → ¬ (𝐾 / 𝑀) ∈ ℕ))
1615con4d 114 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → ((𝐾 / 𝑀) ∈ ℕ → 𝑁 < 𝑀))
1716expimpd 628 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) → 𝑁 < 𝑀))
1817adantrd 484 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → 𝑁 < 𝑀))
19 faccl 13017 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
206, 19syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
2120peano2nnd 10988 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘𝑁) + 1) ∈ ℕ)
228, 21syl5eqel 2702 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝐾 ∈ ℕ)
2322nncnd 10987 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝐾 ∈ ℂ)
24 nndivtr 11013 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℂ) ∧ ((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ)) → (𝐾 / 𝑗) ∈ ℕ)
2524ex 450 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℂ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
26253com13 1267 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
27263expa 1262 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
2823, 27sylanl1 681 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
2928adantrl 751 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
30 nnre 10978 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
31 letri3 10074 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑗 = 𝑀 ↔ (𝑗𝑀𝑀𝑗)))
3230, 1, 31syl2an 494 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑗 = 𝑀 ↔ (𝑗𝑀𝑀𝑗)))
3332biimprd 238 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝑗𝑀𝑀𝑗) → 𝑗 = 𝑀))
3433exp4b 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → (𝑀 ∈ ℕ → (𝑗𝑀 → (𝑀𝑗𝑗 = 𝑀))))
3534com3l 89 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (𝑗𝑀 → (𝑗 ∈ ℕ → (𝑀𝑗𝑗 = 𝑀))))
3635imp32 449 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (𝑀𝑗𝑗 = 𝑀))
3736adantll 749 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (𝑀𝑗𝑗 = 𝑀))
3837imim2d 57 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
3938com23 86 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
4029, 39sylan2d 499 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((1 < 𝑗 ∧ ((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ)) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
4140exp4d 636 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (1 < 𝑗 → ((𝑀 / 𝑗) ∈ ℕ → ((𝐾 / 𝑀) ∈ ℕ → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
4241com24 95 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((𝐾 / 𝑀) ∈ ℕ → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
4342exp32 630 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑗𝑀 → (𝑗 ∈ ℕ → ((𝐾 / 𝑀) ∈ ℕ → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))))
4443com24 95 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐾 / 𝑀) ∈ ℕ → (𝑗 ∈ ℕ → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))))
4544imp31 448 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
4645com14 96 . . . . . . . . 9 (1 < 𝑗 → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
47463imp 1254 . . . . . . . 8 ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
4847com3l 89 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
4948ralimdva 2957 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
5049ex 450 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐾 / 𝑀) ∈ ℕ → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))))
5150adantld 483 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))))
5251impd 447 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
53 prime 11409 . . . 4 (𝑀 ∈ ℕ → (∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)) ↔ ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
5453adantl 482 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)) ↔ ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
5552, 54sylibrd 249 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀))))
5618, 55jcad 555 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → (𝑁 < 𝑀 ∧ ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907   class class class wbr 4618  cfv 5852  (class class class)co 6610  cc 9885  cr 9886  1c1 9888   + caddc 9890   < clt 10025  cle 10026   / cdiv 10635  cn 10971  0cn0 11243  cz 11328  !cfa 13007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-n0 11244  df-z 11329  df-uz 11639  df-seq 12749  df-fac 13008
This theorem is referenced by:  infpnlem2  15546
  Copyright terms: Public domain W3C validator