Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomennd Structured version   Visualization version   GIF version

Theorem isomennd 42820
Description: Sufficient condition to prove that 𝑂 is an outer measure. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
isomennd.x (𝜑𝑋𝑉)
isomennd.o (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
isomennd.o0 (𝜑 → (𝑂‘∅) = 0)
isomennd.le ((𝜑𝑥𝑋𝑦𝑥) → (𝑂𝑦) ≤ (𝑂𝑥))
isomennd.sa ((𝜑𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
Assertion
Ref Expression
isomennd (𝜑𝑂 ∈ OutMeas)
Distinct variable groups:   𝑂,𝑎,𝑛,𝑥   𝑦,𝑂,𝑥   𝑋,𝑎   𝜑,𝑎,𝑛,𝑥   𝜑,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑛,𝑎)   𝑋(𝑥,𝑦,𝑛)

Proof of Theorem isomennd
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isomennd.o . . . . 5 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
2 id 22 . . . . . 6 (𝑂:𝒫 𝑋⟶(0[,]+∞) → 𝑂:𝒫 𝑋⟶(0[,]+∞))
3 fdm 6524 . . . . . . 7 (𝑂:𝒫 𝑋⟶(0[,]+∞) → dom 𝑂 = 𝒫 𝑋)
43feq2d 6502 . . . . . 6 (𝑂:𝒫 𝑋⟶(0[,]+∞) → (𝑂:dom 𝑂⟶(0[,]+∞) ↔ 𝑂:𝒫 𝑋⟶(0[,]+∞)))
52, 4mpbird 259 . . . . 5 (𝑂:𝒫 𝑋⟶(0[,]+∞) → 𝑂:dom 𝑂⟶(0[,]+∞))
61, 5syl 17 . . . 4 (𝜑𝑂:dom 𝑂⟶(0[,]+∞))
7 unipw 5345 . . . . . . 7 𝒫 𝑋 = 𝑋
87pweqi 4559 . . . . . 6 𝒫 𝒫 𝑋 = 𝒫 𝑋
98a1i 11 . . . . 5 (𝜑 → 𝒫 𝒫 𝑋 = 𝒫 𝑋)
101, 3syl 17 . . . . . . 7 (𝜑 → dom 𝑂 = 𝒫 𝑋)
1110unieqd 4854 . . . . . 6 (𝜑 dom 𝑂 = 𝒫 𝑋)
1211pweqd 4560 . . . . 5 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋)
139, 12, 103eqtr4rd 2869 . . . 4 (𝜑 → dom 𝑂 = 𝒫 dom 𝑂)
14 isomennd.o0 . . . 4 (𝜑 → (𝑂‘∅) = 0)
156, 13, 14jca31 517 . . 3 (𝜑 → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0))
16 simpl 485 . . . . 5 ((𝜑 ∧ (𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥)) → 𝜑)
17 simpr 487 . . . . . . . 8 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ∈ 𝒫 dom 𝑂)
1812, 9eqtrd 2858 . . . . . . . . 9 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝑋)
1918adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝒫 dom 𝑂 = 𝒫 𝑋)
2017, 19eleqtrd 2917 . . . . . . 7 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ∈ 𝒫 𝑋)
21 elpwi 4550 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
2220, 21syl 17 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥𝑋)
2322adantrr 715 . . . . 5 ((𝜑 ∧ (𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥)) → 𝑥𝑋)
24 elpwi 4550 . . . . . . 7 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
2524adantl 484 . . . . . 6 ((𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥) → 𝑦𝑥)
2625adantl 484 . . . . 5 ((𝜑 ∧ (𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥)) → 𝑦𝑥)
27 isomennd.le . . . . 5 ((𝜑𝑥𝑋𝑦𝑥) → (𝑂𝑦) ≤ (𝑂𝑥))
2816, 23, 26, 27syl3anc 1367 . . . 4 ((𝜑 ∧ (𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥)) → (𝑂𝑦) ≤ (𝑂𝑥))
2928ralrimivva 3193 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥))
30 0le0 11741 . . . . . . . . 9 0 ≤ 0
3130a1i 11 . . . . . . . 8 ((𝜑𝑥 = ∅) → 0 ≤ 0)
32 unieq 4851 . . . . . . . . . . . . 13 (𝑥 = ∅ → 𝑥 = ∅)
33 uni0 4868 . . . . . . . . . . . . . 14 ∅ = ∅
3433a1i 11 . . . . . . . . . . . . 13 (𝑥 = ∅ → ∅ = ∅)
3532, 34eqtrd 2858 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
3635fveq2d 6676 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑂 𝑥) = (𝑂‘∅))
3736adantl 484 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (𝑂 𝑥) = (𝑂‘∅))
3814adantr 483 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (𝑂‘∅) = 0)
3937, 38eqtrd 2858 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (𝑂 𝑥) = 0)
40 reseq2 5850 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑂𝑥) = (𝑂 ↾ ∅))
41 res0 5859 . . . . . . . . . . . . . 14 (𝑂 ↾ ∅) = ∅
4241a1i 11 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑂 ↾ ∅) = ∅)
4340, 42eqtrd 2858 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑂𝑥) = ∅)
4443fveq2d 6676 . . . . . . . . . . 11 (𝑥 = ∅ → (Σ^‘(𝑂𝑥)) = (Σ^‘∅))
45 sge00 42665 . . . . . . . . . . . 12 ^‘∅) = 0
4645a1i 11 . . . . . . . . . . 11 (𝑥 = ∅ → (Σ^‘∅) = 0)
4744, 46eqtrd 2858 . . . . . . . . . 10 (𝑥 = ∅ → (Σ^‘(𝑂𝑥)) = 0)
4847adantl 484 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (Σ^‘(𝑂𝑥)) = 0)
4939, 48breq12d 5081 . . . . . . . 8 ((𝜑𝑥 = ∅) → ((𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)) ↔ 0 ≤ 0))
5031, 49mpbird 259 . . . . . . 7 ((𝜑𝑥 = ∅) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
5150ad4ant14 750 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
52 simpl 485 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ ¬ 𝑥 = ∅) → ((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω))
53 neqne 3026 . . . . . . . 8 𝑥 = ∅ → 𝑥 ≠ ∅)
5453adantl 484 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ ¬ 𝑥 = ∅) → 𝑥 ≠ ∅)
55 ssnnf1octb 41463 . . . . . . . . 9 ((𝑥 ≼ ω ∧ 𝑥 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥))
5655adantll 712 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥))
571ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → 𝑂:𝒫 𝑋⟶(0[,]+∞))
5814ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → (𝑂‘∅) = 0)
59 simpr 487 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ∈ 𝒫 dom 𝑂)
6010pweqd 4560 . . . . . . . . . . . . . . . 16 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋)
6160adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋)
6259, 61eleqtrd 2917 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ∈ 𝒫 𝒫 𝑋)
63 elpwi 4550 . . . . . . . . . . . . . 14 (𝑥 ∈ 𝒫 𝒫 𝑋𝑥 ⊆ 𝒫 𝑋)
6462, 63syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ⊆ 𝒫 𝑋)
6564adantr 483 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → 𝑥 ⊆ 𝒫 𝑋)
66 simpl 485 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝜑)
67 isomennd.sa . . . . . . . . . . . . . 14 ((𝜑𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
6866, 67sylan 582 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
6968adantlr 713 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) ∧ 𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
70 simprl 769 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → dom 𝑓 ⊆ ℕ)
71 simprr 771 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → 𝑓:dom 𝑓1-1-onto𝑥)
72 eleq1w 2897 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑚 ∈ dom 𝑓𝑛 ∈ dom 𝑓))
73 fveq2 6672 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑓𝑚) = (𝑓𝑛))
7472, 73ifbieq1d 4492 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → if(𝑚 ∈ dom 𝑓, (𝑓𝑚), ∅) = if(𝑛 ∈ dom 𝑓, (𝑓𝑛), ∅))
7574cbvmptv 5171 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ if(𝑚 ∈ dom 𝑓, (𝑓𝑚), ∅)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ dom 𝑓, (𝑓𝑛), ∅))
7657, 58, 65, 69, 70, 71, 75isomenndlem 42819 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
7776ex 415 . . . . . . . . . 10 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → ((dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
7877ad2antrr 724 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ((dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
7978exlimdv 1934 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → (∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
8056, 79mpd 15 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
8152, 54, 80syl2anc 586 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ ¬ 𝑥 = ∅) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
8251, 81pm2.61dan 811 . . . . 5 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
8382ex 415 . . . 4 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → (𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
8483ralrimiva 3184 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
8515, 29, 84jca31 517 . 2 (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))))
86 isomennd.x . . . . 5 (𝜑𝑋𝑉)
8786pwexd 5282 . . . 4 (𝜑 → 𝒫 𝑋 ∈ V)
88 fex 6991 . . . 4 ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝒫 𝑋 ∈ V) → 𝑂 ∈ V)
891, 87, 88syl2anc 586 . . 3 (𝜑𝑂 ∈ V)
90 isome 42783 . . 3 (𝑂 ∈ V → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))))
9189, 90syl 17 . 2 (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))))
9285, 91mpbird 259 1 (𝜑𝑂 ∈ OutMeas)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  Vcvv 3496  wss 3938  c0 4293  ifcif 4469  𝒫 cpw 4541   cuni 4840   ciun 4921   class class class wbr 5068  cmpt 5148  dom cdm 5557  cres 5559  wf 6353  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  ωcom 7582  cdom 8509  0cc0 10539  +∞cpnf 10674  cle 10678  cn 11640  [,]cicc 12744  Σ^csumge0 42651  OutMeascome 42778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-xadd 12511  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-sumge0 42652  df-ome 42779
This theorem is referenced by:  ovnome  42862
  Copyright terms: Public domain W3C validator