Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomennd Structured version   Visualization version   GIF version

Theorem isomennd 39245
Description: Sufficient condition to prove that 𝑂 is an outer measure. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
isomennd.x (𝜑𝑋𝑉)
isomennd.o (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
isomennd.o0 (𝜑 → (𝑂‘∅) = 0)
isomennd.le ((𝜑𝑥𝑋𝑦𝑥) → (𝑂𝑦) ≤ (𝑂𝑥))
isomennd.sa ((𝜑𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
Assertion
Ref Expression
isomennd (𝜑𝑂 ∈ OutMeas)
Distinct variable groups:   𝑂,𝑎,𝑛,𝑥   𝑦,𝑂,𝑥   𝑋,𝑎   𝜑,𝑎,𝑛,𝑥   𝜑,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑛,𝑎)   𝑋(𝑥,𝑦,𝑛)

Proof of Theorem isomennd
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isomennd.o . . . . 5 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
2 id 22 . . . . . 6 (𝑂:𝒫 𝑋⟶(0[,]+∞) → 𝑂:𝒫 𝑋⟶(0[,]+∞))
3 fdm 5950 . . . . . . 7 (𝑂:𝒫 𝑋⟶(0[,]+∞) → dom 𝑂 = 𝒫 𝑋)
43feq2d 5930 . . . . . 6 (𝑂:𝒫 𝑋⟶(0[,]+∞) → (𝑂:dom 𝑂⟶(0[,]+∞) ↔ 𝑂:𝒫 𝑋⟶(0[,]+∞)))
52, 4mpbird 245 . . . . 5 (𝑂:𝒫 𝑋⟶(0[,]+∞) → 𝑂:dom 𝑂⟶(0[,]+∞))
61, 5syl 17 . . . 4 (𝜑𝑂:dom 𝑂⟶(0[,]+∞))
7 unipw 4839 . . . . . . 7 𝒫 𝑋 = 𝑋
87pweqi 4111 . . . . . 6 𝒫 𝒫 𝑋 = 𝒫 𝑋
98a1i 11 . . . . 5 (𝜑 → 𝒫 𝒫 𝑋 = 𝒫 𝑋)
101, 3syl 17 . . . . . . 7 (𝜑 → dom 𝑂 = 𝒫 𝑋)
1110unieqd 4376 . . . . . 6 (𝜑 dom 𝑂 = 𝒫 𝑋)
1211pweqd 4112 . . . . 5 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋)
139, 12, 103eqtr4rd 2654 . . . 4 (𝜑 → dom 𝑂 = 𝒫 dom 𝑂)
14 isomennd.o0 . . . 4 (𝜑 → (𝑂‘∅) = 0)
156, 13, 14jca31 554 . . 3 (𝜑 → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0))
16 simpl 471 . . . . 5 ((𝜑 ∧ (𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥)) → 𝜑)
17 simpr 475 . . . . . . . 8 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ∈ 𝒫 dom 𝑂)
1812, 9eqtrd 2643 . . . . . . . . 9 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝑋)
1918adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝒫 dom 𝑂 = 𝒫 𝑋)
2017, 19eleqtrd 2689 . . . . . . 7 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ∈ 𝒫 𝑋)
21 elpwi 4116 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
2220, 21syl 17 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥𝑋)
2322adantrr 748 . . . . 5 ((𝜑 ∧ (𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥)) → 𝑥𝑋)
24 elpwi 4116 . . . . . . 7 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
2524adantl 480 . . . . . 6 ((𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥) → 𝑦𝑥)
2625adantl 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥)) → 𝑦𝑥)
27 isomennd.le . . . . 5 ((𝜑𝑥𝑋𝑦𝑥) → (𝑂𝑦) ≤ (𝑂𝑥))
2816, 23, 26, 27syl3anc 1317 . . . 4 ((𝜑 ∧ (𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥)) → (𝑂𝑦) ≤ (𝑂𝑥))
2928ralrimivva 2953 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥))
30 0le0 10960 . . . . . . . . 9 0 ≤ 0
3130a1i 11 . . . . . . . 8 ((𝜑𝑥 = ∅) → 0 ≤ 0)
32 unieq 4374 . . . . . . . . . . . . 13 (𝑥 = ∅ → 𝑥 = ∅)
33 uni0 4395 . . . . . . . . . . . . . 14 ∅ = ∅
3433a1i 11 . . . . . . . . . . . . 13 (𝑥 = ∅ → ∅ = ∅)
3532, 34eqtrd 2643 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
3635fveq2d 6092 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑂 𝑥) = (𝑂‘∅))
3736adantl 480 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (𝑂 𝑥) = (𝑂‘∅))
3814adantr 479 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (𝑂‘∅) = 0)
3937, 38eqtrd 2643 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (𝑂 𝑥) = 0)
40 reseq2 5299 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑂𝑥) = (𝑂 ↾ ∅))
41 res0 5308 . . . . . . . . . . . . . 14 (𝑂 ↾ ∅) = ∅
4241a1i 11 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑂 ↾ ∅) = ∅)
4340, 42eqtrd 2643 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑂𝑥) = ∅)
4443fveq2d 6092 . . . . . . . . . . 11 (𝑥 = ∅ → (Σ^‘(𝑂𝑥)) = (Σ^‘∅))
45 sge00 39093 . . . . . . . . . . . 12 ^‘∅) = 0
4645a1i 11 . . . . . . . . . . 11 (𝑥 = ∅ → (Σ^‘∅) = 0)
4744, 46eqtrd 2643 . . . . . . . . . 10 (𝑥 = ∅ → (Σ^‘(𝑂𝑥)) = 0)
4847adantl 480 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (Σ^‘(𝑂𝑥)) = 0)
4939, 48breq12d 4590 . . . . . . . 8 ((𝜑𝑥 = ∅) → ((𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)) ↔ 0 ≤ 0))
5031, 49mpbird 245 . . . . . . 7 ((𝜑𝑥 = ∅) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
5150ad4ant14 1284 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
52 simpl 471 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ ¬ 𝑥 = ∅) → ((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω))
53 neqne 2789 . . . . . . . 8 𝑥 = ∅ → 𝑥 ≠ ∅)
5453adantl 480 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ ¬ 𝑥 = ∅) → 𝑥 ≠ ∅)
55 ssnnf1octb 38201 . . . . . . . . 9 ((𝑥 ≼ ω ∧ 𝑥 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥))
5655adantll 745 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥))
571ad2antrr 757 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → 𝑂:𝒫 𝑋⟶(0[,]+∞))
5814ad2antrr 757 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → (𝑂‘∅) = 0)
59 simpr 475 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ∈ 𝒫 dom 𝑂)
6010pweqd 4112 . . . . . . . . . . . . . . . 16 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋)
6160adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋)
6259, 61eleqtrd 2689 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ∈ 𝒫 𝒫 𝑋)
63 elpwi 4116 . . . . . . . . . . . . . 14 (𝑥 ∈ 𝒫 𝒫 𝑋𝑥 ⊆ 𝒫 𝑋)
6462, 63syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ⊆ 𝒫 𝑋)
6564adantr 479 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → 𝑥 ⊆ 𝒫 𝑋)
66 simpl 471 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝜑)
67 isomennd.sa . . . . . . . . . . . . . 14 ((𝜑𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
6866, 67sylan 486 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
6968adantlr 746 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) ∧ 𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
70 simprl 789 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → dom 𝑓 ⊆ ℕ)
71 simprr 791 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → 𝑓:dom 𝑓1-1-onto𝑥)
72 eleq1 2675 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑚 ∈ dom 𝑓𝑛 ∈ dom 𝑓))
73 fveq2 6088 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑓𝑚) = (𝑓𝑛))
7472, 73ifbieq1d 4058 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → if(𝑚 ∈ dom 𝑓, (𝑓𝑚), ∅) = if(𝑛 ∈ dom 𝑓, (𝑓𝑛), ∅))
7574cbvmptv 4672 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ if(𝑚 ∈ dom 𝑓, (𝑓𝑚), ∅)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ dom 𝑓, (𝑓𝑛), ∅))
7657, 58, 65, 69, 70, 71, 75isomenndlem 39244 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
7776ex 448 . . . . . . . . . 10 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → ((dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
7877ad2antrr 757 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ((dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
7978exlimdv 1847 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → (∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
8056, 79mpd 15 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
8152, 54, 80syl2anc 690 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ ¬ 𝑥 = ∅) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
8251, 81pm2.61dan 827 . . . . 5 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
8382ex 448 . . . 4 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → (𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
8483ralrimiva 2948 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
8515, 29, 84jca31 554 . 2 (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))))
86 isomennd.x . . . . 5 (𝜑𝑋𝑉)
87 pwexg 4771 . . . . 5 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
8886, 87syl 17 . . . 4 (𝜑 → 𝒫 𝑋 ∈ V)
89 fex 6372 . . . 4 ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝒫 𝑋 ∈ V) → 𝑂 ∈ V)
901, 88, 89syl2anc 690 . . 3 (𝜑𝑂 ∈ V)
91 isome 39208 . . 3 (𝑂 ∈ V → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))))
9290, 91syl 17 . 2 (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))))
9385, 92mpbird 245 1 (𝜑𝑂 ∈ OutMeas)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wex 1694  wcel 1976  wne 2779  wral 2895  Vcvv 3172  wss 3539  c0 3873  ifcif 4035  𝒫 cpw 4107   cuni 4366   ciun 4449   class class class wbr 4577  cmpt 4637  dom cdm 5028  cres 5030  wf 5786  1-1-ontowf1o 5789  cfv 5790  (class class class)co 6527  ωcom 6935  cdom 7817  0cc0 9793  +∞cpnf 9928  cle 9932  cn 10870  [,]cicc 12008  Σ^csumge0 39079  OutMeascome 39203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-oi 8276  df-card 8626  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-rp 11668  df-xadd 11782  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-sum 14214  df-sumge0 39080  df-ome 39204
This theorem is referenced by:  ovnome  39287
  Copyright terms: Public domain W3C validator