MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1addlem2 Structured version   Visualization version   GIF version

Theorem itg1addlem2 24298
Description: Lemma for itg1add 24302. The function 𝐼 represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both 𝑖 and 𝑗 are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 24300 and itg1addlem5 24301. (Contributed by Mario Carneiro, 26-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
itg1add.3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
Assertion
Ref Expression
itg1addlem2 (𝜑𝐼:(ℝ × ℝ)⟶ℝ)
Distinct variable groups:   𝑖,𝑗,𝐹   𝑖,𝐺,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐼(𝑖,𝑗)

Proof of Theorem itg1addlem2
StepHypRef Expression
1 iffalse 4476 . . . . . . . 8 (¬ (𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
21adantl 484 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
3 i1fadd.1 . . . . . . . . . . 11 (𝜑𝐹 ∈ dom ∫1)
4 i1fima 24279 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑖}) ∈ dom vol)
53, 4syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ {𝑖}) ∈ dom vol)
6 i1fadd.2 . . . . . . . . . . 11 (𝜑𝐺 ∈ dom ∫1)
7 i1fima 24279 . . . . . . . . . . 11 (𝐺 ∈ dom ∫1 → (𝐺 “ {𝑗}) ∈ dom vol)
86, 7syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 “ {𝑗}) ∈ dom vol)
9 inmbl 24143 . . . . . . . . . 10 (((𝐹 “ {𝑖}) ∈ dom vol ∧ (𝐺 “ {𝑗}) ∈ dom vol) → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
105, 8, 9syl2anc 586 . . . . . . . . 9 (𝜑 → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
1110ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
12 mblvol 24131 . . . . . . . 8 (((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol → (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
1311, 12syl 17 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
142, 13eqtrd 2856 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
15 neorian 3111 . . . . . . 7 ((𝑖 ≠ 0 ∨ 𝑗 ≠ 0) ↔ ¬ (𝑖 = 0 ∧ 𝑗 = 0))
16 inss1 4205 . . . . . . . . 9 ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐹 “ {𝑖})
175ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (𝐹 “ {𝑖}) ∈ dom vol)
18 mblss 24132 . . . . . . . . . 10 ((𝐹 “ {𝑖}) ∈ dom vol → (𝐹 “ {𝑖}) ⊆ ℝ)
1917, 18syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (𝐹 “ {𝑖}) ⊆ ℝ)
20 mblvol 24131 . . . . . . . . . . 11 ((𝐹 “ {𝑖}) ∈ dom vol → (vol‘(𝐹 “ {𝑖})) = (vol*‘(𝐹 “ {𝑖})))
2117, 20syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol‘(𝐹 “ {𝑖})) = (vol*‘(𝐹 “ {𝑖})))
223ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝐹 ∈ dom ∫1)
23 simplrl 775 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ∈ ℝ)
24 simpr 487 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ≠ 0)
25 eldifsn 4719 . . . . . . . . . . . 12 (𝑖 ∈ (ℝ ∖ {0}) ↔ (𝑖 ∈ ℝ ∧ 𝑖 ≠ 0))
2623, 24, 25sylanbrc 585 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ∈ (ℝ ∖ {0}))
27 i1fima2sn 24281 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1𝑖 ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {𝑖})) ∈ ℝ)
2822, 26, 27syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol‘(𝐹 “ {𝑖})) ∈ ℝ)
2921, 28eqeltrrd 2914 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol*‘(𝐹 “ {𝑖})) ∈ ℝ)
30 ovolsscl 24087 . . . . . . . . 9 ((((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐹 “ {𝑖}) ∧ (𝐹 “ {𝑖}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑖})) ∈ ℝ) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
3116, 19, 29, 30mp3an2i 1462 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
32 inss2 4206 . . . . . . . . 9 ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐺 “ {𝑗})
336adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → 𝐺 ∈ dom ∫1)
3433, 7syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝐺 “ {𝑗}) ∈ dom vol)
3534adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (𝐺 “ {𝑗}) ∈ dom vol)
36 mblss 24132 . . . . . . . . . 10 ((𝐺 “ {𝑗}) ∈ dom vol → (𝐺 “ {𝑗}) ⊆ ℝ)
3735, 36syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (𝐺 “ {𝑗}) ⊆ ℝ)
38 mblvol 24131 . . . . . . . . . . 11 ((𝐺 “ {𝑗}) ∈ dom vol → (vol‘(𝐺 “ {𝑗})) = (vol*‘(𝐺 “ {𝑗})))
3935, 38syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol‘(𝐺 “ {𝑗})) = (vol*‘(𝐺 “ {𝑗})))
406ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝐺 ∈ dom ∫1)
41 simplrr 776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ∈ ℝ)
42 simpr 487 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ≠ 0)
43 eldifsn 4719 . . . . . . . . . . . 12 (𝑗 ∈ (ℝ ∖ {0}) ↔ (𝑗 ∈ ℝ ∧ 𝑗 ≠ 0))
4441, 42, 43sylanbrc 585 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ∈ (ℝ ∖ {0}))
45 i1fima2sn 24281 . . . . . . . . . . 11 ((𝐺 ∈ dom ∫1𝑗 ∈ (ℝ ∖ {0})) → (vol‘(𝐺 “ {𝑗})) ∈ ℝ)
4640, 44, 45syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol‘(𝐺 “ {𝑗})) ∈ ℝ)
4739, 46eqeltrrd 2914 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol*‘(𝐺 “ {𝑗})) ∈ ℝ)
48 ovolsscl 24087 . . . . . . . . 9 ((((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐺 “ {𝑗}) ∧ (𝐺 “ {𝑗}) ⊆ ℝ ∧ (vol*‘(𝐺 “ {𝑗})) ∈ ℝ) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
4932, 37, 47, 48mp3an2i 1462 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5031, 49jaodan 954 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ (𝑖 ≠ 0 ∨ 𝑗 ≠ 0)) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5115, 50sylan2br 596 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5214, 51eqeltrd 2913 . . . . 5 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5352ex 415 . . . 4 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (¬ (𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ))
54 iftrue 4473 . . . . 5 ((𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = 0)
55 0re 10643 . . . . 5 0 ∈ ℝ
5654, 55eqeltrdi 2921 . . . 4 ((𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5753, 56pm2.61d2 183 . . 3 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5857ralrimivva 3191 . 2 (𝜑 → ∀𝑖 ∈ ℝ ∀𝑗 ∈ ℝ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
59 itg1add.3 . . 3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
6059fmpo 7766 . 2 (∀𝑖 ∈ ℝ ∀𝑗 ∈ ℝ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ ↔ 𝐼:(ℝ × ℝ)⟶ℝ)
6158, 60sylib 220 1 (𝜑𝐼:(ℝ × ℝ)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wral 3138  cdif 3933  cin 3935  wss 3936  ifcif 4467  {csn 4567   × cxp 5553  ccnv 5554  dom cdm 5555  cima 5558  wf 6351  cfv 6355  cmpo 7158  cr 10536  0cc0 10537  vol*covol 24063  volcvol 24064  1citg1 24216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xadd 12509  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-xmet 20538  df-met 20539  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221
This theorem is referenced by:  itg1addlem4  24300  itg1addlem5  24301
  Copyright terms: Public domain W3C validator