MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmul Structured version   Visualization version   GIF version

Theorem i1fmul 24299
Description: The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1fmul (𝜑 → (𝐹f · 𝐺) ∈ dom ∫1)

Proof of Theorem i1fmul
Dummy variables 𝑦 𝑧 𝑤 𝑣 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 10624 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
21adantl 484 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
3 i1fadd.1 . . . 4 (𝜑𝐹 ∈ dom ∫1)
4 i1ff 24279 . . . 4 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
53, 4syl 17 . . 3 (𝜑𝐹:ℝ⟶ℝ)
6 i1fadd.2 . . . 4 (𝜑𝐺 ∈ dom ∫1)
7 i1ff 24279 . . . 4 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
86, 7syl 17 . . 3 (𝜑𝐺:ℝ⟶ℝ)
9 reex 10630 . . . 4 ℝ ∈ V
109a1i 11 . . 3 (𝜑 → ℝ ∈ V)
11 inidm 4197 . . 3 (ℝ ∩ ℝ) = ℝ
122, 5, 8, 10, 10, 11off 7426 . 2 (𝜑 → (𝐹f · 𝐺):ℝ⟶ℝ)
13 i1frn 24280 . . . . . 6 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
143, 13syl 17 . . . . 5 (𝜑 → ran 𝐹 ∈ Fin)
15 i1frn 24280 . . . . . 6 (𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin)
166, 15syl 17 . . . . 5 (𝜑 → ran 𝐺 ∈ Fin)
17 xpfi 8791 . . . . 5 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
1814, 16, 17syl2anc 586 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
19 eqid 2823 . . . . . 6 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))
20 ovex 7191 . . . . . 6 (𝑢 · 𝑣) ∈ V
2119, 20fnmpoi 7770 . . . . 5 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) Fn (ran 𝐹 × ran 𝐺)
22 dffn4 6598 . . . . 5 ((𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) Fn (ran 𝐹 × ran 𝐺) ↔ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)))
2321, 22mpbi 232 . . . 4 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))
24 fofi 8812 . . . 4 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))) → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) ∈ Fin)
2518, 23, 24sylancl 588 . . 3 (𝜑 → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) ∈ Fin)
26 eqid 2823 . . . . . . . . 9 (𝑥 · 𝑦) = (𝑥 · 𝑦)
27 rspceov 7205 . . . . . . . . 9 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 ∧ (𝑥 · 𝑦) = (𝑥 · 𝑦)) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣))
2826, 27mp3an3 1446 . . . . . . . 8 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣))
29 ovex 7191 . . . . . . . . 9 (𝑥 · 𝑦) ∈ V
30 eqeq1 2827 . . . . . . . . . 10 (𝑤 = (𝑥 · 𝑦) → (𝑤 = (𝑢 · 𝑣) ↔ (𝑥 · 𝑦) = (𝑢 · 𝑣)))
31302rexbidv 3302 . . . . . . . . 9 (𝑤 = (𝑥 · 𝑦) → (∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣) ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣)))
3229, 31elab 3669 . . . . . . . 8 ((𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)} ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣))
3328, 32sylibr 236 . . . . . . 7 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → (𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
3433adantl 484 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺)) → (𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
355ffnd 6517 . . . . . . 7 (𝜑𝐹 Fn ℝ)
36 dffn3 6527 . . . . . . 7 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
3735, 36sylib 220 . . . . . 6 (𝜑𝐹:ℝ⟶ran 𝐹)
388ffnd 6517 . . . . . . 7 (𝜑𝐺 Fn ℝ)
39 dffn3 6527 . . . . . . 7 (𝐺 Fn ℝ ↔ 𝐺:ℝ⟶ran 𝐺)
4038, 39sylib 220 . . . . . 6 (𝜑𝐺:ℝ⟶ran 𝐺)
4134, 37, 40, 10, 10, 11off 7426 . . . . 5 (𝜑 → (𝐹f · 𝐺):ℝ⟶{𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
4241frnd 6523 . . . 4 (𝜑 → ran (𝐹f · 𝐺) ⊆ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
4319rnmpo 7286 . . . 4 ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) = {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)}
4442, 43sseqtrrdi 4020 . . 3 (𝜑 → ran (𝐹f · 𝐺) ⊆ ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)))
4525, 44ssfid 8743 . 2 (𝜑 → ran (𝐹f · 𝐺) ∈ Fin)
4612frnd 6523 . . . . . . 7 (𝜑 → ran (𝐹f · 𝐺) ⊆ ℝ)
47 ax-resscn 10596 . . . . . . 7 ℝ ⊆ ℂ
4846, 47sstrdi 3981 . . . . . 6 (𝜑 → ran (𝐹f · 𝐺) ⊆ ℂ)
4948ssdifd 4119 . . . . 5 (𝜑 → (ran (𝐹f · 𝐺) ∖ {0}) ⊆ (ℂ ∖ {0}))
5049sselda 3969 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0}))
513, 6i1fmullem 24297 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → ((𝐹f · 𝐺) “ {𝑦}) = 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})))
5250, 51syldan 593 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → ((𝐹f · 𝐺) “ {𝑦}) = 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})))
53 difss 4110 . . . . . 6 (ran 𝐺 ∖ {0}) ⊆ ran 𝐺
54 ssfi 8740 . . . . . 6 ((ran 𝐺 ∈ Fin ∧ (ran 𝐺 ∖ {0}) ⊆ ran 𝐺) → (ran 𝐺 ∖ {0}) ∈ Fin)
5516, 53, 54sylancl 588 . . . . 5 (𝜑 → (ran 𝐺 ∖ {0}) ∈ Fin)
56 i1fima 24281 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol)
573, 56syl 17 . . . . . . 7 (𝜑 → (𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol)
58 i1fima 24281 . . . . . . . 8 (𝐺 ∈ dom ∫1 → (𝐺 “ {𝑧}) ∈ dom vol)
596, 58syl 17 . . . . . . 7 (𝜑 → (𝐺 “ {𝑧}) ∈ dom vol)
60 inmbl 24145 . . . . . . 7 (((𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol ∧ (𝐺 “ {𝑧}) ∈ dom vol) → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6157, 59, 60syl2anc 586 . . . . . 6 (𝜑 → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6261ralrimivw 3185 . . . . 5 (𝜑 → ∀𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
63 finiunmbl 24147 . . . . 5 (((ran 𝐺 ∖ {0}) ∈ Fin ∧ ∀𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol) → 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6455, 62, 63syl2anc 586 . . . 4 (𝜑 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6564adantr 483 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6652, 65eqeltrd 2915 . 2 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → ((𝐹f · 𝐺) “ {𝑦}) ∈ dom vol)
67 mblvol 24133 . . . 4 (((𝐹f · 𝐺) “ {𝑦}) ∈ dom vol → (vol‘((𝐹f · 𝐺) “ {𝑦})) = (vol*‘((𝐹f · 𝐺) “ {𝑦})))
6866, 67syl 17 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol‘((𝐹f · 𝐺) “ {𝑦})) = (vol*‘((𝐹f · 𝐺) “ {𝑦})))
69 mblss 24134 . . . . 5 (((𝐹f · 𝐺) “ {𝑦}) ∈ dom vol → ((𝐹f · 𝐺) “ {𝑦}) ⊆ ℝ)
7066, 69syl 17 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → ((𝐹f · 𝐺) “ {𝑦}) ⊆ ℝ)
7155adantr 483 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (ran 𝐺 ∖ {0}) ∈ Fin)
72 inss2 4208 . . . . . . 7 ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧})
7372a1i 11 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧}))
7459ad2antrr 724 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ∈ dom vol)
75 mblss 24134 . . . . . . 7 ((𝐺 “ {𝑧}) ∈ dom vol → (𝐺 “ {𝑧}) ⊆ ℝ)
7674, 75syl 17 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ⊆ ℝ)
77 mblvol 24133 . . . . . . . 8 ((𝐺 “ {𝑧}) ∈ dom vol → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
7874, 77syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
796adantr 483 . . . . . . . 8 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → 𝐺 ∈ dom ∫1)
80 i1fima2sn 24283 . . . . . . . 8 ((𝐺 ∈ dom ∫1𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
8179, 80sylan 582 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
8278, 81eqeltrrd 2916 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐺 “ {𝑧})) ∈ ℝ)
83 ovolsscl 24089 . . . . . 6 ((((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧}) ∧ (𝐺 “ {𝑧}) ⊆ ℝ ∧ (vol*‘(𝐺 “ {𝑧})) ∈ ℝ) → (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
8473, 76, 82, 83syl3anc 1367 . . . . 5 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
8571, 84fsumrecl 15093 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
8652fveq2d 6676 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol*‘((𝐹f · 𝐺) “ {𝑦})) = (vol*‘ 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
87 mblss 24134 . . . . . . . . . 10 (((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
8861, 87syl 17 . . . . . . . . 9 (𝜑 → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
8988ad2antrr 724 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
9089, 84jca 514 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
9190ralrimiva 3184 . . . . . 6 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → ∀𝑧 ∈ (ran 𝐺 ∖ {0})(((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
92 ovolfiniun 24104 . . . . . 6 (((ran 𝐺 ∖ {0}) ∈ Fin ∧ ∀𝑧 ∈ (ran 𝐺 ∖ {0})(((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)) → (vol*‘ 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
9371, 91, 92syl2anc 586 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol*‘ 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
9486, 93eqbrtrd 5090 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol*‘((𝐹f · 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
95 ovollecl 24086 . . . 4 ((((𝐹f · 𝐺) “ {𝑦}) ⊆ ℝ ∧ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ ∧ (vol*‘((𝐹f · 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})))) → (vol*‘((𝐹f · 𝐺) “ {𝑦})) ∈ ℝ)
9670, 85, 94, 95syl3anc 1367 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol*‘((𝐹f · 𝐺) “ {𝑦})) ∈ ℝ)
9768, 96eqeltrd 2915 . 2 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol‘((𝐹f · 𝐺) “ {𝑦})) ∈ ℝ)
9812, 45, 66, 97i1fd 24284 1 (𝜑 → (𝐹f · 𝐺) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2801  wral 3140  wrex 3141  Vcvv 3496  cdif 3935  cin 3937  wss 3938  {csn 4569   ciun 4921   class class class wbr 5068   × cxp 5555  ccnv 5556  dom cdm 5557  ran crn 5558  cima 5560   Fn wfn 6352  wf 6353  ontowfo 6355  cfv 6357  (class class class)co 7158  cmpo 7160  f cof 7409  Fincfn 8511  cc 10537  cr 10538  0cc0 10539   · cmul 10544  cle 10678   / cdiv 11299  Σcsu 15044  vol*covol 24065  volcvol 24066  1citg1 24218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-xmet 20540  df-met 20541  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223
This theorem is referenced by:  mbfmullem2  24327  ftc1anclem3  34971
  Copyright terms: Public domain W3C validator