MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjass Structured version   Visualization version   GIF version

Theorem latjass 17707
Description: Lattice join is associative. Lemma 2.2 in [MegPav2002] p. 362. (chjass 29312 analog.) (Contributed by NM, 17-Sep-2011.)
Hypotheses
Ref Expression
latjass.b 𝐵 = (Base‘𝐾)
latjass.j = (join‘𝐾)
Assertion
Ref Expression
latjass ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))

Proof of Theorem latjass
StepHypRef Expression
1 latjass.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2823 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 485 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
4 latjass.j . . . . 5 = (join‘𝐾)
51, 4latjcl 17663 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
653adant3r3 1180 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
7 simpr3 1192 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
81, 4latjcl 17663 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
93, 6, 7, 8syl3anc 1367 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
10 simpr1 1190 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
111, 4latjcl 17663 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
12113adant3r1 1178 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
131, 4latjcl 17663 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
143, 10, 12, 13syl3anc 1367 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
151, 2, 4latlej1 17672 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)))
163, 10, 12, 15syl3anc 1367 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)))
17 simpr2 1191 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
181, 2, 4latlej1 17672 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑌(le‘𝐾)(𝑌 𝑍))
19183adant3r1 1178 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑌 𝑍))
201, 2, 4latlej2 17673 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑌 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
213, 10, 12, 20syl3anc 1367 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
221, 2, 3, 17, 12, 14, 19, 21lattrd 17670 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍)))
231, 2, 4latjle12 17674 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵)) → ((𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍))))
243, 10, 17, 14, 23syl13anc 1368 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍))))
2516, 22, 24mpbi2and 710 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)))
261, 2, 4latlej2 17673 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑍(le‘𝐾)(𝑌 𝑍))
27263adant3r1 1178 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)(𝑌 𝑍))
281, 2, 3, 7, 12, 14, 27, 21lattrd 17670 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍)))
291, 2, 4latjle12 17674 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵𝑍𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵)) → (((𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍))))
303, 6, 7, 14, 29syl13anc 1368 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍))))
3125, 28, 30mpbi2and 710 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
321, 2, 4latlej1 17672 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
33323adant3r3 1180 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)(𝑋 𝑌))
341, 2, 4latlej1 17672 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (𝑋 𝑌)(le‘𝐾)((𝑋 𝑌) 𝑍))
353, 6, 7, 34syl3anc 1367 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌)(le‘𝐾)((𝑋 𝑌) 𝑍))
361, 2, 3, 10, 6, 9, 33, 35lattrd 17670 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)((𝑋 𝑌) 𝑍))
371, 2, 4latlej2 17673 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
38373adant3r3 1180 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑋 𝑌))
391, 2, 3, 17, 6, 9, 38, 35lattrd 17670 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)((𝑋 𝑌) 𝑍))
401, 2, 4latlej2 17673 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍))
413, 6, 7, 40syl3anc 1367 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍))
421, 2, 4latjle12 17674 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑌𝐵𝑍𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑌(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)))
433, 17, 7, 9, 42syl13anc 1368 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)))
4439, 41, 43mpbi2and 710 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍))
451, 2, 4latjle12 17674 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑋(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍)))
463, 10, 12, 9, 45syl13anc 1368 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍)))
4736, 44, 46mpbi2and 710 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍))
481, 2, 3, 9, 14, 31, 47latasymd 17669 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  lecple 16574  joincjn 17556  Latclat 17657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-proset 17540  df-poset 17558  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-lat 17658
This theorem is referenced by:  latj12  17708  latj32  17709  latj4  17713  latmass  17800  latmassOLD  36367  hlatjass  36508  cvrexchlem  36557  cvrat3  36580  2atmat  36699  4atlem3  36734  4atlem3a  36735  4atlem4a  36737  4atlem4d  36740  4at2  36752  2lplnja  36757  pmapjlln1  36993  dalawlem3  37011  dalawlem12  37020  cdleme30a  37516  trlcolem  37864  cdlemh1  37953  cdlemkid1  38060  doca2N  38264  djajN  38275
  Copyright terms: Public domain W3C validator