MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmo Structured version   Visualization version   GIF version

Theorem lmmo 21988
Description: A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmo.1 (𝜑𝐽 ∈ Haus)
lmmo.4 (𝜑𝐹(⇝𝑡𝐽)𝐴)
lmmo.5 (𝜑𝐹(⇝𝑡𝐽)𝐵)
Assertion
Ref Expression
lmmo (𝜑𝐴 = 𝐵)

Proof of Theorem lmmo
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 654 . . . . . . . . 9 (((𝑥𝐽𝑦𝐽) ∧ (𝐴𝑥𝐵𝑦)) ↔ ((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)))
2 nnuz 12282 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
3 simprr 771 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝐴𝑥)
4 1zzd 12014 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 1 ∈ ℤ)
5 lmmo.4 . . . . . . . . . . . . . 14 (𝜑𝐹(⇝𝑡𝐽)𝐴)
65adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝐹(⇝𝑡𝐽)𝐴)
7 simprl 769 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝑥𝐽)
82, 3, 4, 6, 7lmcvg 21870 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥)
98ex 415 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐽𝐴𝑥) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
10 simprr 771 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝐵𝑦)
11 1zzd 12014 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 1 ∈ ℤ)
12 lmmo.5 . . . . . . . . . . . . . 14 (𝜑𝐹(⇝𝑡𝐽)𝐵)
1312adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝐹(⇝𝑡𝐽)𝐵)
14 simprl 769 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝑦𝐽)
152, 10, 11, 13, 14lmcvg 21870 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦)
1615ex 415 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐽𝐵𝑦) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦))
179, 16anim12d 610 . . . . . . . . . 10 (𝜑 → (((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦)))
182rexanuz2 14709 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦))
19 nnz 12005 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
20 uzid 12259 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
21 ne0i 4300 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑗) → (ℤ𝑗) ≠ ∅)
2219, 20, 213syl 18 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (ℤ𝑗) ≠ ∅)
23 r19.2z 4440 . . . . . . . . . . . . . 14 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ∃𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦))
24 elin 4169 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ∈ (𝑥𝑦) ↔ ((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦))
25 n0i 4299 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ∈ (𝑥𝑦) → ¬ (𝑥𝑦) = ∅)
2624, 25sylbir 237 . . . . . . . . . . . . . . 15 (((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
2726rexlimivw 3282 . . . . . . . . . . . . . 14 (∃𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
2823, 27syl 17 . . . . . . . . . . . . 13 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ¬ (𝑥𝑦) = ∅)
2922, 28sylan 582 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ¬ (𝑥𝑦) = ∅)
3029rexlimiva 3281 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
3118, 30sylbir 237 . . . . . . . . . 10 ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
3217, 31syl6 35 . . . . . . . . 9 (𝜑 → (((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)) → ¬ (𝑥𝑦) = ∅))
331, 32syl5bi 244 . . . . . . . 8 (𝜑 → (((𝑥𝐽𝑦𝐽) ∧ (𝐴𝑥𝐵𝑦)) → ¬ (𝑥𝑦) = ∅))
3433expdimp 455 . . . . . . 7 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ((𝐴𝑥𝐵𝑦) → ¬ (𝑥𝑦) = ∅))
35 imnan 402 . . . . . . 7 (((𝐴𝑥𝐵𝑦) → ¬ (𝑥𝑦) = ∅) ↔ ¬ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
3634, 35sylib 220 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ¬ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
37 df-3an 1085 . . . . . 6 ((𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅) ↔ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
3836, 37sylnibr 331 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ¬ (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
3938anassrs 470 . . . 4 (((𝜑𝑥𝐽) ∧ 𝑦𝐽) → ¬ (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
4039nrexdv 3270 . . 3 ((𝜑𝑥𝐽) → ¬ ∃𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
4140nrexdv 3270 . 2 (𝜑 → ¬ ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
42 lmmo.1 . . . 4 (𝜑𝐽 ∈ Haus)
43 haustop 21939 . . . . . . 7 (𝐽 ∈ Haus → 𝐽 ∈ Top)
4442, 43syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
45 toptopon2 21526 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
4644, 45sylib 220 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
47 lmcl 21905 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝐴) → 𝐴 𝐽)
4846, 5, 47syl2anc 586 . . . 4 (𝜑𝐴 𝐽)
49 lmcl 21905 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝐵) → 𝐵 𝐽)
5046, 12, 49syl2anc 586 . . . 4 (𝜑𝐵 𝐽)
51 eqid 2821 . . . . . 6 𝐽 = 𝐽
5251hausnei 21936 . . . . 5 ((𝐽 ∈ Haus ∧ (𝐴 𝐽𝐵 𝐽𝐴𝐵)) → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
53523exp2 1350 . . . 4 (𝐽 ∈ Haus → (𝐴 𝐽 → (𝐵 𝐽 → (𝐴𝐵 → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅)))))
5442, 48, 50, 53syl3c 66 . . 3 (𝜑 → (𝐴𝐵 → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅)))
5554necon1bd 3034 . 2 (𝜑 → (¬ ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅) → 𝐴 = 𝐵))
5641, 55mpd 15 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  cin 3935  c0 4291   cuni 4838   class class class wbr 5066  cfv 6355  1c1 10538  cn 11638  cz 11982  cuz 12244  Topctop 21501  TopOnctopon 21518  𝑡clm 21834  Hauscha 21916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-z 11983  df-uz 12245  df-top 21502  df-topon 21519  df-lm 21837  df-haus 21923
This theorem is referenced by:  lmfun  21989  occllem  29080  nlelchi  29838  hmopidmchi  29928  xlimuni  42154
  Copyright terms: Public domain W3C validator