Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlelchi Structured version   Visualization version   GIF version

Theorem nlelchi 29048
 Description: The null space of a continuous linear functional is a closed subspace. Remark 3.8 of [Beran] p. 103. (Contributed by NM, 11-Feb-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1 𝑇 ∈ LinFn
nlelch.2 𝑇 ∈ ContFn
Assertion
Ref Expression
nlelchi (null‘𝑇) ∈ C

Proof of Theorem nlelchi
Dummy variables 𝑓 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlelch.1 . . 3 𝑇 ∈ LinFn
21nlelshi 29047 . 2 (null‘𝑇) ∈ S
3 vex 3234 . . . . . 6 𝑥 ∈ V
43hlimveci 28175 . . . . 5 (𝑓𝑣 𝑥𝑥 ∈ ℋ)
54adantl 481 . . . 4 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ ℋ)
6 eqid 2651 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
76cnfldhaus 22635 . . . . . 6 (TopOpen‘ℂfld) ∈ Haus
87a1i 11 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (TopOpen‘ℂfld) ∈ Haus)
9 eqid 2651 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
10 eqid 2651 . . . . . . . . . . 11 (norm ∘ − ) = (norm ∘ − )
119, 10hhims 28157 . . . . . . . . . 10 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
12 eqid 2651 . . . . . . . . . 10 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
139, 11, 12hhlm 28184 . . . . . . . . 9 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ))
14 resss 5457 . . . . . . . . 9 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1513, 14eqsstri 3668 . . . . . . . 8 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1615ssbri 4730 . . . . . . 7 (𝑓𝑣 𝑥𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
1716adantl 481 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
18 nlelch.2 . . . . . . . 8 𝑇 ∈ ContFn
1910, 12, 6hhcnf 28892 . . . . . . . 8 ContFn = ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld))
2018, 19eleqtri 2728 . . . . . . 7 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld))
2120a1i 11 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld)))
2217, 21lmcn 21157 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓)(⇝𝑡‘(TopOpen‘ℂfld))(𝑇𝑥))
231lnfnfi 29028 . . . . . . . . . 10 𝑇: ℋ⟶ℂ
24 ffvelrn 6397 . . . . . . . . . . 11 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (null‘𝑇))
2524adantlr 751 . . . . . . . . . 10 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (null‘𝑇))
26 elnlfn2 28916 . . . . . . . . . 10 ((𝑇: ℋ⟶ℂ ∧ (𝑓𝑛) ∈ (null‘𝑇)) → (𝑇‘(𝑓𝑛)) = 0)
2723, 25, 26sylancr 696 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑇‘(𝑓𝑛)) = 0)
28 fvco3 6314 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = (𝑇‘(𝑓𝑛)))
2928adantlr 751 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = (𝑇‘(𝑓𝑛)))
30 c0ex 10072 . . . . . . . . . . 11 0 ∈ V
3130fvconst2 6510 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((ℕ × {0})‘𝑛) = 0)
3231adantl 481 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((ℕ × {0})‘𝑛) = 0)
3327, 29, 323eqtr4d 2695 . . . . . . . 8 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛))
3433ralrimiva 2995 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛))
35 ffn 6083 . . . . . . . . . 10 (𝑇: ℋ⟶ℂ → 𝑇 Fn ℋ)
3623, 35ax-mp 5 . . . . . . . . 9 𝑇 Fn ℋ
37 simpl 472 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓:ℕ⟶(null‘𝑇))
382shssii 28198 . . . . . . . . . 10 (null‘𝑇) ⊆ ℋ
39 fss 6094 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ (null‘𝑇) ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
4037, 38, 39sylancl 695 . . . . . . . . 9 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓:ℕ⟶ ℋ)
41 fnfco 6107 . . . . . . . . 9 ((𝑇 Fn ℋ ∧ 𝑓:ℕ⟶ ℋ) → (𝑇𝑓) Fn ℕ)
4236, 40, 41sylancr 696 . . . . . . . 8 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓) Fn ℕ)
4330fconst 6129 . . . . . . . . 9 (ℕ × {0}):ℕ⟶{0}
44 ffn 6083 . . . . . . . . 9 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
4543, 44ax-mp 5 . . . . . . . 8 (ℕ × {0}) Fn ℕ
46 eqfnfv 6351 . . . . . . . 8 (((𝑇𝑓) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → ((𝑇𝑓) = (ℕ × {0}) ↔ ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛)))
4742, 45, 46sylancl 695 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → ((𝑇𝑓) = (ℕ × {0}) ↔ ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛)))
4834, 47mpbird 247 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓) = (ℕ × {0}))
496cnfldtopon 22633 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
5049a1i 11 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
51 0cnd 10071 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 0 ∈ ℂ)
52 1zzd 11446 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 1 ∈ ℤ)
53 nnuz 11761 . . . . . . . 8 ℕ = (ℤ‘1)
5453lmconst 21113 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
5550, 51, 52, 54syl3anc 1366 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
5648, 55eqbrtrd 4707 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓)(⇝𝑡‘(TopOpen‘ℂfld))0)
578, 22, 56lmmo 21232 . . . 4 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑥) = 0)
58 elnlfn 28915 . . . . 5 (𝑇: ℋ⟶ℂ → (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0)))
5923, 58ax-mp 5 . . . 4 (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0))
605, 57, 59sylanbrc 699 . . 3 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))
6160gen2 1763 . 2 𝑓𝑥((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))
62 isch2 28208 . 2 ((null‘𝑇) ∈ C ↔ ((null‘𝑇) ∈ S ∧ ∀𝑓𝑥((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))))
632, 61, 62mpbir2an 975 1 (null‘𝑇) ∈ C
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1521   = wceq 1523   ∈ wcel 2030  ∀wral 2941   ⊆ wss 3607  {csn 4210  ⟨cop 4216   class class class wbr 4685   × cxp 5141   ↾ cres 5145   ∘ ccom 5147   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑𝑚 cmap 7899  ℂcc 9972  0cc0 9974  1c1 9975  ℕcn 11058  ℤcz 11415  TopOpenctopn 16129  MetOpencmopn 19784  ℂfldccnfld 19794  TopOnctopon 20763   Cn ccn 21076  ⇝𝑡clm 21078  Hauscha 21160   ℋchil 27904   +ℎ cva 27905   ·ℎ csm 27906  normℎcno 27908   −ℎ cmv 27910   ⇝𝑣 chli 27912   Sℋ csh 27913   Cℋ cch 27914  nullcnl 27937  ContFnccnfn 27938  LinFnclf 27939 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-icc 12220  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cn 21079  df-cnp 21080  df-lm 21081  df-haus 21167  df-xms 22172  df-ms 22173  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-hnorm 27953  df-hvsub 27956  df-hlim 27957  df-sh 28192  df-ch 28206  df-nlfn 28833  df-cnfn 28834  df-lnfn 28835 This theorem is referenced by:  riesz3i  29049
 Copyright terms: Public domain W3C validator