MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvneg1 Structured version   Visualization version   GIF version

Theorem lmodvneg1 18887
Description: Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvneg1.v 𝑉 = (Base‘𝑊)
lmodvneg1.n 𝑁 = (invg𝑊)
lmodvneg1.f 𝐹 = (Scalar‘𝑊)
lmodvneg1.s · = ( ·𝑠𝑊)
lmodvneg1.u 1 = (1r𝐹)
lmodvneg1.m 𝑀 = (invg𝐹)
Assertion
Ref Expression
lmodvneg1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑀1 ) · 𝑋) = (𝑁𝑋))

Proof of Theorem lmodvneg1
StepHypRef Expression
1 simpl 473 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
2 lmodvneg1.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
32lmodfgrp 18853 . . . . . 6 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
43adantr 481 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐹 ∈ Grp)
5 eqid 2620 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
6 lmodvneg1.u . . . . . . 7 1 = (1r𝐹)
72, 5, 6lmod1cl 18871 . . . . . 6 (𝑊 ∈ LMod → 1 ∈ (Base‘𝐹))
87adantr 481 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 1 ∈ (Base‘𝐹))
9 lmodvneg1.m . . . . . 6 𝑀 = (invg𝐹)
105, 9grpinvcl 17448 . . . . 5 ((𝐹 ∈ Grp ∧ 1 ∈ (Base‘𝐹)) → (𝑀1 ) ∈ (Base‘𝐹))
114, 8, 10syl2anc 692 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑀1 ) ∈ (Base‘𝐹))
12 simpr 477 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋𝑉)
13 lmodvneg1.v . . . . 5 𝑉 = (Base‘𝑊)
14 lmodvneg1.s . . . . 5 · = ( ·𝑠𝑊)
1513, 2, 14, 5lmodvscl 18861 . . . 4 ((𝑊 ∈ LMod ∧ (𝑀1 ) ∈ (Base‘𝐹) ∧ 𝑋𝑉) → ((𝑀1 ) · 𝑋) ∈ 𝑉)
161, 11, 12, 15syl3anc 1324 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑀1 ) · 𝑋) ∈ 𝑉)
17 eqid 2620 . . . 4 (+g𝑊) = (+g𝑊)
18 eqid 2620 . . . 4 (0g𝑊) = (0g𝑊)
1913, 17, 18lmod0vrid 18875 . . 3 ((𝑊 ∈ LMod ∧ ((𝑀1 ) · 𝑋) ∈ 𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(0g𝑊)) = ((𝑀1 ) · 𝑋))
2016, 19syldan 487 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(0g𝑊)) = ((𝑀1 ) · 𝑋))
21 lmodvneg1.n . . . . . 6 𝑁 = (invg𝑊)
2213, 21lmodvnegcl 18885 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁𝑋) ∈ 𝑉)
2313, 17lmodass 18859 . . . . 5 ((𝑊 ∈ LMod ∧ (((𝑀1 ) · 𝑋) ∈ 𝑉𝑋𝑉 ∧ (𝑁𝑋) ∈ 𝑉)) → ((((𝑀1 ) · 𝑋)(+g𝑊)𝑋)(+g𝑊)(𝑁𝑋)) = (((𝑀1 ) · 𝑋)(+g𝑊)(𝑋(+g𝑊)(𝑁𝑋))))
241, 16, 12, 22, 23syl13anc 1326 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((((𝑀1 ) · 𝑋)(+g𝑊)𝑋)(+g𝑊)(𝑁𝑋)) = (((𝑀1 ) · 𝑋)(+g𝑊)(𝑋(+g𝑊)(𝑁𝑋))))
2513, 2, 14, 6lmodvs1 18872 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 1 · 𝑋) = 𝑋)
2625oveq2d 6651 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)( 1 · 𝑋)) = (((𝑀1 ) · 𝑋)(+g𝑊)𝑋))
27 eqid 2620 . . . . . . . . . 10 (+g𝐹) = (+g𝐹)
28 eqid 2620 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
295, 27, 28, 9grplinv 17449 . . . . . . . . 9 ((𝐹 ∈ Grp ∧ 1 ∈ (Base‘𝐹)) → ((𝑀1 )(+g𝐹) 1 ) = (0g𝐹))
304, 8, 29syl2anc 692 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑀1 )(+g𝐹) 1 ) = (0g𝐹))
3130oveq1d 6650 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 )(+g𝐹) 1 ) · 𝑋) = ((0g𝐹) · 𝑋))
3213, 17, 2, 14, 5, 27lmodvsdir 18868 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((𝑀1 ) ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹) ∧ 𝑋𝑉)) → (((𝑀1 )(+g𝐹) 1 ) · 𝑋) = (((𝑀1 ) · 𝑋)(+g𝑊)( 1 · 𝑋)))
331, 11, 8, 12, 32syl13anc 1326 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 )(+g𝐹) 1 ) · 𝑋) = (((𝑀1 ) · 𝑋)(+g𝑊)( 1 · 𝑋)))
3413, 2, 14, 28, 18lmod0vs 18877 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝐹) · 𝑋) = (0g𝑊))
3531, 33, 343eqtr3d 2662 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)( 1 · 𝑋)) = (0g𝑊))
3626, 35eqtr3d 2656 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)𝑋) = (0g𝑊))
3736oveq1d 6650 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((((𝑀1 ) · 𝑋)(+g𝑊)𝑋)(+g𝑊)(𝑁𝑋)) = ((0g𝑊)(+g𝑊)(𝑁𝑋)))
3824, 37eqtr3d 2656 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(𝑋(+g𝑊)(𝑁𝑋))) = ((0g𝑊)(+g𝑊)(𝑁𝑋)))
3913, 17, 18, 21lmodvnegid 18886 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋(+g𝑊)(𝑁𝑋)) = (0g𝑊))
4039oveq2d 6651 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(𝑋(+g𝑊)(𝑁𝑋))) = (((𝑀1 ) · 𝑋)(+g𝑊)(0g𝑊)))
4113, 17, 18lmod0vlid 18874 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁𝑋) ∈ 𝑉) → ((0g𝑊)(+g𝑊)(𝑁𝑋)) = (𝑁𝑋))
4222, 41syldan 487 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝑊)(+g𝑊)(𝑁𝑋)) = (𝑁𝑋))
4338, 40, 423eqtr3d 2662 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(0g𝑊)) = (𝑁𝑋))
4420, 43eqtr3d 2656 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑀1 ) · 𝑋) = (𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  cfv 5876  (class class class)co 6635  Basecbs 15838  +gcplusg 15922  Scalarcsca 15925   ·𝑠 cvsca 15926  0gc0g 16081  Grpcgrp 17403  invgcminusg 17404  1rcur 18482  LModclmod 18844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-plusg 15935  df-0g 16083  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-grp 17406  df-minusg 17407  df-mgp 18471  df-ur 18483  df-ring 18530  df-lmod 18846
This theorem is referenced by:  lmodvsneg  18888  lmodvsubval2  18899  lssvnegcl  18937  lspsnneg  18987  lmodvsinv  19017  lspsolvlem  19123  tlmtgp  21980  clmvneg1  22880  deg1invg  23847
  Copyright terms: Public domain W3C validator