MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseq Structured version   Visualization version   GIF version

Theorem mbfi1fseq 23533
Description: A characterization of measurability in terms of simple functions (this is an if and only if for nonnegative functions, although we don't prove it). Any nonnegative measurable function is the limit of an increasing sequence of nonnegative simple functions. This proof is an example of a poor de Bruijn factor - the formalized proof is much longer than an average hand proof, which usually just describes the function 𝐺 and "leaves the details as an exercise to the reader". (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
Assertion
Ref Expression
mbfi1fseq (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘𝑟 ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑛,𝑥,𝐹   𝜑,𝑛,𝑥
Allowed substitution hint:   𝜑(𝑔)

Proof of Theorem mbfi1fseq
Dummy variables 𝑗 𝑘 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1fseq.1 . 2 (𝜑𝐹 ∈ MblFn)
2 mbfi1fseq.2 . 2 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 oveq2 6698 . . . . . 6 (𝑗 = 𝑘 → (2↑𝑗) = (2↑𝑘))
43oveq2d 6706 . . . . 5 (𝑗 = 𝑘 → ((𝐹𝑧) · (2↑𝑗)) = ((𝐹𝑧) · (2↑𝑘)))
54fveq2d 6233 . . . 4 (𝑗 = 𝑘 → (⌊‘((𝐹𝑧) · (2↑𝑗))) = (⌊‘((𝐹𝑧) · (2↑𝑘))))
65, 3oveq12d 6708 . . 3 (𝑗 = 𝑘 → ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)) = ((⌊‘((𝐹𝑧) · (2↑𝑘))) / (2↑𝑘)))
7 fveq2 6229 . . . . . 6 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
87oveq1d 6705 . . . . 5 (𝑧 = 𝑦 → ((𝐹𝑧) · (2↑𝑘)) = ((𝐹𝑦) · (2↑𝑘)))
98fveq2d 6233 . . . 4 (𝑧 = 𝑦 → (⌊‘((𝐹𝑧) · (2↑𝑘))) = (⌊‘((𝐹𝑦) · (2↑𝑘))))
109oveq1d 6705 . . 3 (𝑧 = 𝑦 → ((⌊‘((𝐹𝑧) · (2↑𝑘))) / (2↑𝑘)) = ((⌊‘((𝐹𝑦) · (2↑𝑘))) / (2↑𝑘)))
116, 10cbvmpt2v 6777 . 2 (𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗))) = (𝑘 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑘))) / (2↑𝑘)))
12 eleq1 2718 . . . . . 6 (𝑦 = 𝑥 → (𝑦 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝑚[,]𝑚)))
13 oveq2 6698 . . . . . . . 8 (𝑦 = 𝑥 → (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) = (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥))
1413breq1d 4695 . . . . . . 7 (𝑦 = 𝑥 → ((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚 ↔ (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚))
1514, 13ifbieq1d 4142 . . . . . 6 (𝑦 = 𝑥 → if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚) = if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚))
1612, 15ifbieq1d 4142 . . . . 5 (𝑦 = 𝑥 → if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0) = if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0))
1716cbvmptv 4783 . . . 4 (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0))
18 negeq 10311 . . . . . . . 8 (𝑚 = 𝑘 → -𝑚 = -𝑘)
19 id 22 . . . . . . . 8 (𝑚 = 𝑘𝑚 = 𝑘)
2018, 19oveq12d 6708 . . . . . . 7 (𝑚 = 𝑘 → (-𝑚[,]𝑚) = (-𝑘[,]𝑘))
2120eleq2d 2716 . . . . . 6 (𝑚 = 𝑘 → (𝑥 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝑘[,]𝑘)))
22 oveq1 6697 . . . . . . . 8 (𝑚 = 𝑘 → (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) = (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥))
2322, 19breq12d 4698 . . . . . . 7 (𝑚 = 𝑘 → ((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚 ↔ (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘))
2423, 22, 19ifbieq12d 4146 . . . . . 6 (𝑚 = 𝑘 → if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚) = if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘))
2521, 24ifbieq1d 4142 . . . . 5 (𝑚 = 𝑘 → if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0) = if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0))
2625mpteq2dv 4778 . . . 4 (𝑚 = 𝑘 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0)))
2717, 26syl5eq 2697 . . 3 (𝑚 = 𝑘 → (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0)))
2827cbvmptv 4783 . 2 (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if(𝑦 ∈ (-𝑚[,]𝑚), if((𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦) ≤ 𝑚, (𝑚(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑦), 𝑚), 0))) = (𝑘 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑘[,]𝑘), if((𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥) ≤ 𝑘, (𝑘(𝑗 ∈ ℕ, 𝑧 ∈ ℝ ↦ ((⌊‘((𝐹𝑧) · (2↑𝑗))) / (2↑𝑗)))𝑥), 𝑘), 0)))
291, 2, 11, 28mbfi1fseqlem6 23532 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑔𝑛) ∧ (𝑔𝑛) ∘𝑟 ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054  wex 1744  wcel 2030  wral 2941  ifcif 4119   class class class wbr 4685  cmpt 4762  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑟 cofr 6938  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  +∞cpnf 10109  cle 10113  -cneg 10305   / cdiv 10722  cn 11058  2c2 11108  [,)cico 12215  [,]cicc 12216  cfl 12631  cexp 12900  cli 14259  MblFncmbf 23428  1citg1 23429  0𝑝c0p 23481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-ovol 23279  df-vol 23280  df-mbf 23433  df-itg1 23434  df-0p 23482
This theorem is referenced by:  mbfi1flimlem  23534  itg2add  23571
  Copyright terms: Public domain W3C validator