Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvunilem0 Structured version   Visualization version   GIF version

Theorem measvunilem0 31472
Description: Lemma for measvuni 31473. (Contributed by Thierry Arnoux, 6-Mar-2017.)
Hypothesis
Ref Expression
measvunilem.0.1 𝑥𝐴
Assertion
Ref Expression
measvunilem0 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem measvunilem0
StepHypRef Expression
1 simp3l 1197 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 ≼ ω)
2 ctex 8524 . . 3 (𝐴 ≼ ω → 𝐴 ∈ V)
3 measvunilem.0.1 . . . 4 𝑥𝐴
43esum0 31308 . . 3 (𝐴 ∈ V → Σ*𝑥𝐴0 = 0)
51, 2, 43syl 18 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴0 = 0)
6 nfv 1915 . . . 4 𝑥 𝑀 ∈ (measures‘𝑆)
7 nfra1 3219 . . . 4 𝑥𝑥𝐴 𝐵 ∈ {∅}
8 nfcv 2977 . . . . . 6 𝑥
9 nfcv 2977 . . . . . 6 𝑥ω
103, 8, 9nfbr 5113 . . . . 5 𝑥 𝐴 ≼ ω
11 nfdisj1 5045 . . . . 5 𝑥Disj 𝑥𝐴 𝐵
1210, 11nfan 1900 . . . 4 𝑥(𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)
136, 7, 12nf3an 1902 . . 3 𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵))
14 eqidd 2822 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = 𝐴)
15 simp2 1133 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝐵 ∈ {∅})
1615r19.21bi 3208 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → 𝐵 ∈ {∅})
17 elsni 4584 . . . . . 6 (𝐵 ∈ {∅} → 𝐵 = ∅)
1816, 17syl 17 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → 𝐵 = ∅)
1918fveq2d 6674 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → (𝑀𝐵) = (𝑀‘∅))
20 measvnul 31465 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
21203ad2ant1 1129 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀‘∅) = 0)
2221adantr 483 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → (𝑀‘∅) = 0)
2319, 22eqtrd 2856 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → (𝑀𝐵) = 0)
2413, 14, 23esumeq12dvaf 31290 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = Σ*𝑥𝐴0)
2513, 3, 3, 14, 18iuneq12daf 30308 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥𝐴 𝐵 = 𝑥𝐴 ∅)
26 iun0 4985 . . . . 5 𝑥𝐴 ∅ = ∅
2725, 26syl6eq 2872 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥𝐴 𝐵 = ∅)
2827fveq2d 6674 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀‘∅))
2928, 21eqtrd 2856 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = 0)
305, 24, 293eqtr4rd 2867 1 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wnfc 2961  wral 3138  Vcvv 3494  c0 4291  {csn 4567   ciun 4919  Disj wdisj 5031   class class class wbr 5066  cfv 6355  ωcom 7580  cdom 8507  0cc0 10537  Σ*cesum 31286  measurescmeas 31454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-xadd 12509  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-tset 16584  df-ple 16585  df-ds 16587  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-ordt 16774  df-xrs 16775  df-mre 16857  df-mrc 16858  df-acs 16860  df-ps 17810  df-tsr 17811  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-cntz 18447  df-cmn 18908  df-fbas 20542  df-fg 20543  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-ntr 21628  df-nei 21706  df-cn 21835  df-haus 21923  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-tsms 22735  df-esum 31287  df-meas 31455
This theorem is referenced by:  measvuni  31473
  Copyright terms: Public domain W3C validator