![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funmpt | Structured version Visualization version GIF version |
Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
Ref | Expression |
---|---|
funmpt | ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab4 6038 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | df-mpt 4838 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
3 | 2 | funeqi 6022 | . 2 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
4 | 1, 3 | mpbir 221 | 1 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1596 ∈ wcel 2103 {copab 4820 ↦ cmpt 4837 Fun wfun 5995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-fun 6003 |
This theorem is referenced by: funmpt2 6040 resfunexg 6595 mptexg 6600 mptexgf 6601 brtpos2 7478 tposfun 7488 mptfi 8381 sniffsupp 8431 cantnfrescl 8686 cantnflem1 8699 r0weon 8948 axcc2lem 9371 mptct 9473 negfi 11084 mptnn0fsupp 12912 ccatalpha 13486 mreacs 16441 acsfn 16442 isofval 16539 lubfun 17102 glbfun 17115 acsficl2d 17298 pmtrsn 18060 gsum2dlem2 18491 gsum2d 18492 dprdfinv 18539 dprdfadd 18540 dmdprdsplitlem 18557 dpjidcl 18578 mptscmfsupp0 19051 00lsp 19104 psrass1lem 19500 psrlidm 19526 psrridm 19527 psrass1 19528 psrass23l 19531 psrcom 19532 psrass23 19533 mplsubrg 19563 mplmon 19586 mplmonmul 19587 mplcoe1 19588 mplcoe5 19591 mplbas2 19593 evlslem2 19635 evlslem6 19636 psropprmul 19731 coe1mul2 19762 pjpm 20175 frlmphllem 20242 frlmphl 20243 uvcff 20253 uvcresum 20255 oftpos 20381 pmatcollpw2lem 20705 tgrest 21086 cmpfi 21334 1stcrestlem 21378 ptcnplem 21547 xkoinjcn 21613 symgtgp 22027 eltsms 22058 rrxmval 23309 tdeglem4 23940 plypf1 24088 tayl0 24236 taylthlem1 24247 xrlimcnp 24815 abrexexd 29575 fmptcof2 29687 ofpreima 29695 funcnvmptOLD 29697 mptctf 29725 psgnfzto1stlem 30080 locfinreflem 30137 measdivcstOLD 30517 sxbrsigalem0 30563 sitgf 30639 nosupno 32076 imageval 32264 poimirlem30 33671 poimir 33674 choicefi 39808 fourierdlem80 40823 sge0tsms 41017 scmsuppss 42580 rmfsupp 42582 scmfsupp 42586 fdivval 42760 |
Copyright terms: Public domain | W3C validator |