Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmdvr Structured version   Visualization version   GIF version

Theorem nmdvr 22384
 Description: The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmdvr.x 𝑋 = (Base‘𝑅)
nmdvr.n 𝑁 = (norm‘𝑅)
nmdvr.u 𝑈 = (Unit‘𝑅)
nmdvr.d / = (/r𝑅)
Assertion
Ref Expression
nmdvr (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁𝐴) / (𝑁𝐵)))

Proof of Theorem nmdvr
StepHypRef Expression
1 simpll 789 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NrmRing)
2 simprl 793 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐴𝑋)
3 nrgring 22377 . . . . . 6 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
43ad2antrr 761 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ Ring)
5 simprr 795 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐵𝑈)
6 nmdvr.u . . . . . 6 𝑈 = (Unit‘𝑅)
7 eqid 2621 . . . . . 6 (invr𝑅) = (invr𝑅)
8 nmdvr.x . . . . . 6 𝑋 = (Base‘𝑅)
96, 7, 8ringinvcl 18597 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐵𝑈) → ((invr𝑅)‘𝐵) ∈ 𝑋)
104, 5, 9syl2anc 692 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((invr𝑅)‘𝐵) ∈ 𝑋)
11 nmdvr.n . . . . 5 𝑁 = (norm‘𝑅)
12 eqid 2621 . . . . 5 (.r𝑅) = (.r𝑅)
138, 11, 12nmmul 22378 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝐴𝑋 ∧ ((invr𝑅)‘𝐵) ∈ 𝑋) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))))
141, 2, 10, 13syl3anc 1323 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))))
15 simplr 791 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NzRing)
1611, 6, 7nminvr 22383 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵𝑈) → (𝑁‘((invr𝑅)‘𝐵)) = (1 / (𝑁𝐵)))
171, 15, 5, 16syl3anc 1323 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘((invr𝑅)‘𝐵)) = (1 / (𝑁𝐵)))
1817oveq2d 6620 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
1914, 18eqtrd 2655 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
20 nmdvr.d . . . . 5 / = (/r𝑅)
218, 12, 6, 7, 20dvrval 18606 . . . 4 ((𝐴𝑋𝐵𝑈) → (𝐴 / 𝐵) = (𝐴(.r𝑅)((invr𝑅)‘𝐵)))
2221adantl 482 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝐴 / 𝐵) = (𝐴(.r𝑅)((invr𝑅)‘𝐵)))
2322fveq2d 6152 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))))
24 nrgngp 22376 . . . . . 6 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
2524ad2antrr 761 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NrmGrp)
268, 11nmcl 22330 . . . . 5 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
2725, 2, 26syl2anc 692 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐴) ∈ ℝ)
2827recnd 10012 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐴) ∈ ℂ)
298, 6unitss 18581 . . . . . 6 𝑈𝑋
3029, 5sseldi 3581 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐵𝑋)
318, 11nmcl 22330 . . . . 5 ((𝑅 ∈ NrmGrp ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
3225, 30, 31syl2anc 692 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ∈ ℝ)
3332recnd 10012 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ∈ ℂ)
3411, 6unitnmn0 22382 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵𝑈) → (𝑁𝐵) ≠ 0)
35343expa 1262 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝐵𝑈) → (𝑁𝐵) ≠ 0)
3635adantrl 751 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ≠ 0)
3728, 33, 36divrecd 10748 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((𝑁𝐴) / (𝑁𝐵)) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
3819, 23, 373eqtr4d 2665 1 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁𝐴) / (𝑁𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ‘cfv 5847  (class class class)co 6604  ℝcr 9879  0cc0 9880  1c1 9881   · cmul 9885   / cdiv 10628  Basecbs 15781  .rcmulr 15863  Ringcrg 18468  Unitcui 18560  invrcinvr 18592  /rcdvr 18603  NzRingcnzr 19176  normcnm 22291  NrmGrpcngp 22292  NrmRingcnrg 22294 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ico 12123  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-0g 16023  df-topgen 16025  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-abv 18738  df-nzr 19177  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-xms 22035  df-ms 22036  df-nm 22297  df-ngp 22298  df-nrg 22300 This theorem is referenced by:  qqhnm  29816
 Copyright terms: Public domain W3C validator