Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhnm Structured version   Visualization version   GIF version

Theorem qqhnm 29840
Description: The norm of the image by ℚHom of a rational number in a topological division ring. (Contributed by Thierry Arnoux, 8-Nov-2017.)
Hypotheses
Ref Expression
qqhnm.n 𝑁 = (norm‘𝑅)
qqhnm.z 𝑍 = (ℤMod‘𝑅)
Assertion
Ref Expression
qqhnm (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (abs‘𝑄))

Proof of Theorem qqhnm
StepHypRef Expression
1 simpr 477 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑄 ∈ ℚ)
2 qeqnumdivden 15389 . . . 4 (𝑄 ∈ ℚ → 𝑄 = ((numer‘𝑄) / (denom‘𝑄)))
32fveq2d 6157 . . 3 (𝑄 ∈ ℚ → (abs‘𝑄) = (abs‘((numer‘𝑄) / (denom‘𝑄))))
41, 3syl 17 . 2 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (abs‘𝑄) = (abs‘((numer‘𝑄) / (denom‘𝑄))))
5 qnumcl 15383 . . . . 5 (𝑄 ∈ ℚ → (numer‘𝑄) ∈ ℤ)
61, 5syl 17 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (numer‘𝑄) ∈ ℤ)
76zcnd 11435 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (numer‘𝑄) ∈ ℂ)
8 qdencl 15384 . . . . 5 (𝑄 ∈ ℚ → (denom‘𝑄) ∈ ℕ)
91, 8syl 17 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ∈ ℕ)
109nncnd 10988 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ∈ ℂ)
11 nnne0 11005 . . . 4 ((denom‘𝑄) ∈ ℕ → (denom‘𝑄) ≠ 0)
121, 8, 113syl 18 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ≠ 0)
137, 10, 12absdivd 14136 . 2 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (abs‘((numer‘𝑄) / (denom‘𝑄))) = ((abs‘(numer‘𝑄)) / (abs‘(denom‘𝑄))))
14 inss2 3817 . . . . 5 (NrmRing ∩ DivRing) ⊆ DivRing
15 simpl1 1062 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ (NrmRing ∩ DivRing))
1614, 15sseldi 3585 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ DivRing)
17 simpl3 1064 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (chr‘𝑅) = 0)
18 eqid 2621 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
19 eqid 2621 . . . . . 6 (/r𝑅) = (/r𝑅)
20 eqid 2621 . . . . . 6 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
2118, 19, 20qqhvval 29833 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑄) = (((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄))))
2221fveq2d 6157 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))))
2316, 17, 1, 22syl21anc 1322 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))))
24 inss1 3816 . . . . 5 (NrmRing ∩ DivRing) ⊆ NrmRing
2524, 15sseldi 3585 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ NrmRing)
26 drngnzr 19194 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
2716, 26syl 17 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑅 ∈ NzRing)
28 drngring 18686 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2920zrhrhm 19792 . . . . . 6 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
30 zringbas 19756 . . . . . . 7 ℤ = (Base‘ℤring)
3130, 18rhmf 18658 . . . . . 6 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3216, 28, 29, 314syl 19 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3332, 6ffvelrnd 6321 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℤRHom‘𝑅)‘(numer‘𝑄)) ∈ (Base‘𝑅))
349nnzd 11433 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (denom‘𝑄) ∈ ℤ)
35 eqid 2621 . . . . . 6 (0g𝑅) = (0g𝑅)
3618, 20, 35elzrhunit 29829 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((denom‘𝑄) ∈ ℤ ∧ (denom‘𝑄) ≠ 0)) → ((ℤRHom‘𝑅)‘(denom‘𝑄)) ∈ (Unit‘𝑅))
3716, 17, 34, 12, 36syl22anc 1324 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℤRHom‘𝑅)‘(denom‘𝑄)) ∈ (Unit‘𝑅))
38 qqhnm.n . . . . 5 𝑁 = (norm‘𝑅)
39 eqid 2621 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
4018, 38, 39, 19nmdvr 22397 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (((ℤRHom‘𝑅)‘(numer‘𝑄)) ∈ (Base‘𝑅) ∧ ((ℤRHom‘𝑅)‘(denom‘𝑄)) ∈ (Unit‘𝑅))) → (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))) = ((𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) / (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄)))))
4125, 27, 33, 37, 40syl22anc 1324 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘(((ℤRHom‘𝑅)‘(numer‘𝑄))(/r𝑅)((ℤRHom‘𝑅)‘(denom‘𝑄)))) = ((𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) / (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄)))))
42 simpl2 1063 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑍 ∈ NrmMod)
43 qqhnm.z . . . . . . 7 𝑍 = (ℤMod‘𝑅)
4443zhmnrg 29817 . . . . . 6 (𝑅 ∈ NrmRing → 𝑍 ∈ NrmRing)
4525, 44syl 17 . . . . 5 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → 𝑍 ∈ NrmRing)
4618, 38, 43, 20zrhnm 29819 . . . . 5 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (numer‘𝑄) ∈ ℤ) → (𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) = (abs‘(numer‘𝑄)))
4742, 45, 27, 6, 46syl31anc 1326 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) = (abs‘(numer‘𝑄)))
4818, 38, 43, 20zrhnm 29819 . . . . 5 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (denom‘𝑄) ∈ ℤ) → (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄))) = (abs‘(denom‘𝑄)))
4942, 45, 27, 34, 48syl31anc 1326 . . . 4 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄))) = (abs‘(denom‘𝑄)))
5047, 49oveq12d 6628 . . 3 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((𝑁‘((ℤRHom‘𝑅)‘(numer‘𝑄))) / (𝑁‘((ℤRHom‘𝑅)‘(denom‘𝑄)))) = ((abs‘(numer‘𝑄)) / (abs‘(denom‘𝑄))))
5123, 41, 503eqtrrd 2660 . 2 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((abs‘(numer‘𝑄)) / (abs‘(denom‘𝑄))) = (𝑁‘((ℚHom‘𝑅)‘𝑄)))
524, 13, 513eqtrrd 2660 1 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (abs‘𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cin 3558  wf 5848  cfv 5852  (class class class)co 6610  0cc0 9888   / cdiv 10636  cn 10972  cz 11329  cq 11740  abscabs 13916  numercnumer 15376  denomcdenom 15377  Basecbs 15792  0gc0g 16032  Ringcrg 18479  Unitcui 18571  /rcdvr 18614   RingHom crh 18644  DivRingcdr 18679  NzRingcnzr 19189  ringzring 19750  ℤRHomczrh 19780  ℤModczlm 19781  chrcchr 19782  normcnm 22304  NrmRingcnrg 22307  NrmModcnlm 22308  ℚHomcqqh 29822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ico 12131  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-dvds 14919  df-gcd 15152  df-numer 15378  df-denom 15379  df-gz 15569  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-rest 16015  df-topn 16016  df-0g 16034  df-topgen 16036  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-mhm 17267  df-grp 17357  df-minusg 17358  df-sbg 17359  df-mulg 17473  df-subg 17523  df-ghm 17590  df-od 17880  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-cring 18482  df-oppr 18555  df-dvdsr 18573  df-unit 18574  df-invr 18604  df-dvr 18615  df-rnghom 18647  df-drng 18681  df-subrg 18710  df-abv 18749  df-lmod 18797  df-nzr 19190  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-cnfld 19679  df-zring 19751  df-zrh 19784  df-zlm 19785  df-chr 19786  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-xms 22048  df-ms 22049  df-nm 22310  df-ngp 22311  df-nrg 22313  df-nlm 22314  df-qqh 29823
This theorem is referenced by:  qqhcn  29841  qqhucn  29842
  Copyright terms: Public domain W3C validator