HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmoplb Structured version   Visualization version   GIF version

Theorem nmoplb 28615
Description: A lower bound for an operator norm. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmoplb ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ (normop𝑇))

Proof of Theorem nmoplb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmopsetretHIL 28572 . . . . 5 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ)
2 ressxr 10027 . . . . 5 ℝ ⊆ ℝ*
31, 2syl6ss 3595 . . . 4 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
433ad2ant1 1080 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
5 fveq2 6148 . . . . . . . . 9 (𝑦 = 𝐴 → (norm𝑦) = (norm𝐴))
65breq1d 4623 . . . . . . . 8 (𝑦 = 𝐴 → ((norm𝑦) ≤ 1 ↔ (norm𝐴) ≤ 1))
7 fveq2 6148 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑇𝑦) = (𝑇𝐴))
87fveq2d 6152 . . . . . . . . 9 (𝑦 = 𝐴 → (norm‘(𝑇𝑦)) = (norm‘(𝑇𝐴)))
98eqeq2d 2631 . . . . . . . 8 (𝑦 = 𝐴 → ((norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)) ↔ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))))
106, 9anbi12d 746 . . . . . . 7 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))) ↔ ((norm𝐴) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴)))))
11 eqid 2621 . . . . . . . 8 (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))
1211biantru 526 . . . . . . 7 ((norm𝐴) ≤ 1 ↔ ((norm𝐴) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))))
1310, 12syl6bbr 278 . . . . . 6 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))) ↔ (norm𝐴) ≤ 1))
1413rspcev 3295 . . . . 5 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
15 fvex 6158 . . . . . 6 (norm‘(𝑇𝐴)) ∈ V
16 eqeq1 2625 . . . . . . . 8 (𝑥 = (norm‘(𝑇𝐴)) → (𝑥 = (norm‘(𝑇𝑦)) ↔ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
1716anbi2d 739 . . . . . . 7 (𝑥 = (norm‘(𝑇𝐴)) → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)))))
1817rexbidv 3045 . . . . . 6 (𝑥 = (norm‘(𝑇𝐴)) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)))))
1915, 18elab 3333 . . . . 5 ((norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
2014, 19sylibr 224 . . . 4 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
21203adant1 1077 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
22 supxrub 12097 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ* ∧ (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}) → (norm‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
234, 21, 22syl2anc 692 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
24 nmopval 28564 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
25243ad2ant1 1080 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
2623, 25breqtrrd 4641 1 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  {cab 2607  wrex 2908  wss 3555   class class class wbr 4613  wf 5843  cfv 5847  supcsup 8290  cr 9879  1c1 9881  *cxr 10017   < clt 10018  cle 10019  chil 27625  normcno 27629  normopcnop 27651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-hilex 27705  ax-hfvadd 27706  ax-hvcom 27707  ax-hvass 27708  ax-hv0cl 27709  ax-hvaddid 27710  ax-hfvmul 27711  ax-hvmulid 27712  ax-hvmulass 27713  ax-hvdistr1 27714  ax-hvdistr2 27715  ax-hvmul0 27716  ax-hfi 27785  ax-his1 27788  ax-his2 27789  ax-his3 27790  ax-his4 27791
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-grpo 27196  df-gid 27197  df-ablo 27248  df-vc 27263  df-nv 27296  df-va 27299  df-ba 27300  df-sm 27301  df-0v 27302  df-nmcv 27304  df-hnorm 27674  df-hba 27675  df-hvsub 27677  df-nmop 28547
This theorem is referenced by:  nmopge0  28619  nmbdoplbi  28732  nmcoplbi  28736  nmophmi  28739  nmoptrii  28802  nmopcoi  28803
  Copyright terms: Public domain W3C validator