HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpyc Structured version   Visualization version   GIF version

Theorem normpyc 28923
Description: Corollary to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
normpyc ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (norm𝐴) ≤ (norm‘(𝐴 + 𝐵))))

Proof of Theorem normpyc
StepHypRef Expression
1 normcl 28902 . . . . . . . . . 10 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
21resqcld 13612 . . . . . . . . 9 (𝐴 ∈ ℋ → ((norm𝐴)↑2) ∈ ℝ)
32recnd 10669 . . . . . . . 8 (𝐴 ∈ ℋ → ((norm𝐴)↑2) ∈ ℂ)
43addid1d 10840 . . . . . . 7 (𝐴 ∈ ℋ → (((norm𝐴)↑2) + 0) = ((norm𝐴)↑2))
54adantr 483 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((norm𝐴)↑2) + 0) = ((norm𝐴)↑2))
6 normcl 28902 . . . . . . . . 9 (𝐵 ∈ ℋ → (norm𝐵) ∈ ℝ)
76sqge0d 13613 . . . . . . . 8 (𝐵 ∈ ℋ → 0 ≤ ((norm𝐵)↑2))
87adantl 484 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ ((norm𝐵)↑2))
96resqcld 13612 . . . . . . . 8 (𝐵 ∈ ℋ → ((norm𝐵)↑2) ∈ ℝ)
10 0re 10643 . . . . . . . . 9 0 ∈ ℝ
11 leadd2 11109 . . . . . . . . 9 ((0 ∈ ℝ ∧ ((norm𝐵)↑2) ∈ ℝ ∧ ((norm𝐴)↑2) ∈ ℝ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
1210, 11mp3an1 1444 . . . . . . . 8 ((((norm𝐵)↑2) ∈ ℝ ∧ ((norm𝐴)↑2) ∈ ℝ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
139, 2, 12syl2anr 598 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
148, 13mpbid 234 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
155, 14eqbrtrrd 5090 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((norm𝐴)↑2) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
1615adantr 483 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm𝐴)↑2) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
17 normpyth 28922 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2))))
1817imp 409 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2)))
1916, 18breqtrrd 5094 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2))
2019ex 415 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2)))
211adantr 483 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (norm𝐴) ∈ ℝ)
22 hvaddcl 28789 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
23 normcl 28902 . . . 4 ((𝐴 + 𝐵) ∈ ℋ → (norm‘(𝐴 + 𝐵)) ∈ ℝ)
2422, 23syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (norm‘(𝐴 + 𝐵)) ∈ ℝ)
25 normge0 28903 . . . 4 (𝐴 ∈ ℋ → 0 ≤ (norm𝐴))
2625adantr 483 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (norm𝐴))
27 normge0 28903 . . . 4 ((𝐴 + 𝐵) ∈ ℋ → 0 ≤ (norm‘(𝐴 + 𝐵)))
2822, 27syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (norm‘(𝐴 + 𝐵)))
2921, 24, 26, 28le2sqd 13621 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((norm𝐴) ≤ (norm‘(𝐴 + 𝐵)) ↔ ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2)))
3020, 29sylibrd 261 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (norm𝐴) ≤ (norm‘(𝐴 + 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537   + caddc 10540  cle 10676  2c2 11693  cexp 13430  chba 28696   + cva 28697   ·ih csp 28699  normcno 28700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-hfvadd 28777  ax-hv0cl 28780  ax-hvmul0 28787  ax-hfi 28856  ax-his1 28859  ax-his2 28860  ax-his3 28861  ax-his4 28862
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-hnorm 28745
This theorem is referenced by:  pjnormi  29498
  Copyright terms: Public domain W3C validator