Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpyc Structured version   Visualization version   GIF version

Theorem normpyc 28131
 Description: Corollary to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
normpyc ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (norm𝐴) ≤ (norm‘(𝐴 + 𝐵))))

Proof of Theorem normpyc
StepHypRef Expression
1 normcl 28110 . . . . . . . . . 10 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
21resqcld 13075 . . . . . . . . 9 (𝐴 ∈ ℋ → ((norm𝐴)↑2) ∈ ℝ)
32recnd 10106 . . . . . . . 8 (𝐴 ∈ ℋ → ((norm𝐴)↑2) ∈ ℂ)
43addid1d 10274 . . . . . . 7 (𝐴 ∈ ℋ → (((norm𝐴)↑2) + 0) = ((norm𝐴)↑2))
54adantr 480 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((norm𝐴)↑2) + 0) = ((norm𝐴)↑2))
6 normcl 28110 . . . . . . . . 9 (𝐵 ∈ ℋ → (norm𝐵) ∈ ℝ)
76sqge0d 13076 . . . . . . . 8 (𝐵 ∈ ℋ → 0 ≤ ((norm𝐵)↑2))
87adantl 481 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ ((norm𝐵)↑2))
96resqcld 13075 . . . . . . . 8 (𝐵 ∈ ℋ → ((norm𝐵)↑2) ∈ ℝ)
10 0re 10078 . . . . . . . . 9 0 ∈ ℝ
11 leadd2 10535 . . . . . . . . 9 ((0 ∈ ℝ ∧ ((norm𝐵)↑2) ∈ ℝ ∧ ((norm𝐴)↑2) ∈ ℝ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
1210, 11mp3an1 1451 . . . . . . . 8 ((((norm𝐵)↑2) ∈ ℝ ∧ ((norm𝐴)↑2) ∈ ℝ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
139, 2, 12syl2anr 494 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
148, 13mpbid 222 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
155, 14eqbrtrrd 4709 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((norm𝐴)↑2) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
1615adantr 480 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm𝐴)↑2) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
17 normpyth 28130 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2))))
1817imp 444 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2)))
1916, 18breqtrrd 4713 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2))
2019ex 449 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2)))
211adantr 480 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (norm𝐴) ∈ ℝ)
22 hvaddcl 27997 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
23 normcl 28110 . . . 4 ((𝐴 + 𝐵) ∈ ℋ → (norm‘(𝐴 + 𝐵)) ∈ ℝ)
2422, 23syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (norm‘(𝐴 + 𝐵)) ∈ ℝ)
25 normge0 28111 . . . 4 (𝐴 ∈ ℋ → 0 ≤ (norm𝐴))
2625adantr 480 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (norm𝐴))
27 normge0 28111 . . . 4 ((𝐴 + 𝐵) ∈ ℋ → 0 ≤ (norm‘(𝐴 + 𝐵)))
2822, 27syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (norm‘(𝐴 + 𝐵)))
2921, 24, 26, 28le2sqd 13084 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((norm𝐴) ≤ (norm‘(𝐴 + 𝐵)) ↔ ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2)))
3020, 29sylibrd 249 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (norm𝐴) ≤ (norm‘(𝐴 + 𝐵))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  ℝcr 9973  0cc0 9974   + caddc 9977   ≤ cle 10113  2c2 11108  ↑cexp 12900   ℋchil 27904   +ℎ cva 27905   ·ih csp 27907  normℎcno 27908 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-hfvadd 27985  ax-hv0cl 27988  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-hnorm 27953 This theorem is referenced by:  pjnormi  28708
 Copyright terms: Public domain W3C validator