Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtrest2NEW Structured version   Visualization version   GIF version

Theorem ordtrest2NEW 31166
Description: An interval-closed set 𝐴 in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in , but in other sets like there are interval-closed sets like (π, +∞) ∩ ℚ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
ordtrest2NEW.2 (𝜑𝐾 ∈ Toset)
ordtrest2NEW.3 (𝜑𝐴𝐵)
ordtrest2NEW.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴)
Assertion
Ref Expression
ordtrest2NEW (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) = ((ordTop‘ ) ↾t 𝐴))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝐴,𝑦,𝑧   𝑧,   𝑧,𝐴   𝑧,𝐵   𝜑,𝑥,𝑦,𝑧   𝑧,𝐾

Proof of Theorem ordtrest2NEW
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtrest2NEW.2 . . . 4 (𝜑𝐾 ∈ Toset)
2 tospos 30645 . . . 4 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
3 posprs 17559 . . . 4 (𝐾 ∈ Poset → 𝐾 ∈ Proset )
41, 2, 33syl 18 . . 3 (𝜑𝐾 ∈ Proset )
5 ordtrest2NEW.3 . . 3 (𝜑𝐴𝐵)
6 ordtNEW.b . . . 4 𝐵 = (Base‘𝐾)
7 ordtNEW.l . . . 4 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
86, 7ordtrestNEW 31164 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (ordTop‘( ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘ ) ↾t 𝐴))
94, 5, 8syl2anc 586 . 2 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘ ) ↾t 𝐴))
10 eqid 2821 . . . . . . . 8 ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) = ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})
11 eqid 2821 . . . . . . . 8 ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}) = ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})
126, 7, 10, 11ordtprsval 31161 . . . . . . 7 (𝐾 ∈ Proset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))))))
134, 12syl 17 . . . . . 6 (𝜑 → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))))))
1413oveq1d 7171 . . . . 5 (𝜑 → ((ordTop‘ ) ↾t 𝐴) = ((topGen‘(fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))))) ↾t 𝐴))
15 fibas 21585 . . . . . 6 (fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))) ∈ TopBases
166fvexi 6684 . . . . . . . 8 𝐵 ∈ V
1716a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
1817, 5ssexd 5228 . . . . . 6 (𝜑𝐴 ∈ V)
19 tgrest 21767 . . . . . 6 (((fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))) ∈ TopBases ∧ 𝐴 ∈ V) → (topGen‘((fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))) ↾t 𝐴)) = ((topGen‘(fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))))) ↾t 𝐴))
2015, 18, 19sylancr 589 . . . . 5 (𝜑 → (topGen‘((fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))) ↾t 𝐴)) = ((topGen‘(fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))))) ↾t 𝐴))
2114, 20eqtr4d 2859 . . . 4 (𝜑 → ((ordTop‘ ) ↾t 𝐴) = (topGen‘((fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))) ↾t 𝐴)))
22 firest 16706 . . . . 5 (fi‘(({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴)) = ((fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))) ↾t 𝐴)
2322fveq2i 6673 . . . 4 (topGen‘(fi‘(({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴))) = (topGen‘((fi‘({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))) ↾t 𝐴))
2421, 23syl6eqr 2874 . . 3 (𝜑 → ((ordTop‘ ) ↾t 𝐴) = (topGen‘(fi‘(({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴))))
25 fvex 6683 . . . . . . . 8 (le‘𝐾) ∈ V
2625inex1 5221 . . . . . . 7 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
277, 26eqeltri 2909 . . . . . 6 ∈ V
2827inex1 5221 . . . . 5 ( ∩ (𝐴 × 𝐴)) ∈ V
29 ordttop 21808 . . . . 5 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
3028, 29mp1i 13 . . . 4 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top)
316, 7, 10, 11ordtprsuni 31162 . . . . . . . . 9 (𝐾 ∈ Proset → 𝐵 = ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))))
324, 31syl 17 . . . . . . . 8 (𝜑𝐵 = ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))))
3332, 17eqeltrrd 2914 . . . . . . 7 (𝜑 ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ∈ V)
34 uniexb 7486 . . . . . . 7 (({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ∈ V ↔ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ∈ V)
3533, 34sylibr 236 . . . . . 6 (𝜑 → ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ∈ V)
36 restval 16700 . . . . . 6 ((({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ∈ V ∧ 𝐴 ∈ V) → (({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴) = ran (𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↦ (𝑣𝐴)))
3735, 18, 36syl2anc 586 . . . . 5 (𝜑 → (({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴) = ran (𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↦ (𝑣𝐴)))
38 sseqin2 4192 . . . . . . . . . . . 12 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
395, 38sylib 220 . . . . . . . . . . 11 (𝜑 → (𝐵𝐴) = 𝐴)
40 eqid 2821 . . . . . . . . . . . . . . 15 dom ( ∩ (𝐴 × 𝐴)) = dom ( ∩ (𝐴 × 𝐴))
4140ordttopon 21801 . . . . . . . . . . . . . 14 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ∩ (𝐴 × 𝐴))))
4228, 41mp1i 13 . . . . . . . . . . . . 13 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ∩ (𝐴 × 𝐴))))
436, 7prsssdm 31160 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
444, 5, 43syl2anc 586 . . . . . . . . . . . . . 14 (𝜑 → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
4544fveq2d 6674 . . . . . . . . . . . . 13 (𝜑 → (TopOn‘dom ( ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴))
4642, 45eleqtrd 2915 . . . . . . . . . . . 12 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴))
47 toponmax 21534 . . . . . . . . . . . 12 ((ordTop‘( ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
4846, 47syl 17 . . . . . . . . . . 11 (𝜑𝐴 ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
4939, 48eqeltrd 2913 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
50 elsni 4584 . . . . . . . . . . . 12 (𝑣 ∈ {𝐵} → 𝑣 = 𝐵)
5150ineq1d 4188 . . . . . . . . . . 11 (𝑣 ∈ {𝐵} → (𝑣𝐴) = (𝐵𝐴))
5251eleq1d 2897 . . . . . . . . . 10 (𝑣 ∈ {𝐵} → ((𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ (𝐵𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
5349, 52syl5ibrcom 249 . . . . . . . . 9 (𝜑 → (𝑣 ∈ {𝐵} → (𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
5453ralrimiv 3181 . . . . . . . 8 (𝜑 → ∀𝑣 ∈ {𝐵} (𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
55 ordtrest2NEW.4 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)} ⊆ 𝐴)
566, 7, 1, 5, 55ordtrest2NEWlem 31165 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
57 eqid 2821 . . . . . . . . . . . 12 (ODual‘𝐾) = (ODual‘𝐾)
5857, 6odubas 17743 . . . . . . . . . . 11 𝐵 = (Base‘(ODual‘𝐾))
597cnveqi 5745 . . . . . . . . . . . 12 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
60 cnvin 6003 . . . . . . . . . . . . 13 ((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘𝐾) ∩ (𝐵 × 𝐵))
61 cnvxp 6014 . . . . . . . . . . . . . 14 (𝐵 × 𝐵) = (𝐵 × 𝐵)
6261ineq2i 4186 . . . . . . . . . . . . 13 ((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘𝐾) ∩ (𝐵 × 𝐵))
63 eqid 2821 . . . . . . . . . . . . . . 15 (le‘𝐾) = (le‘𝐾)
6457, 63oduleval 17741 . . . . . . . . . . . . . 14 (le‘𝐾) = (le‘(ODual‘𝐾))
6564ineq1i 4185 . . . . . . . . . . . . 13 ((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵))
6660, 62, 653eqtri 2848 . . . . . . . . . . . 12 ((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵))
6759, 66eqtri 2844 . . . . . . . . . . 11 = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵))
6857odutos 30650 . . . . . . . . . . . 12 (𝐾 ∈ Toset → (ODual‘𝐾) ∈ Toset)
691, 68syl 17 . . . . . . . . . . 11 (𝜑 → (ODual‘𝐾) ∈ Toset)
70 vex 3497 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
71 vex 3497 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
7270, 71brcnv 5753 . . . . . . . . . . . . . . 15 (𝑦 𝑧𝑧 𝑦)
73 vex 3497 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
7471, 73brcnv 5753 . . . . . . . . . . . . . . 15 (𝑧 𝑥𝑥 𝑧)
7572, 74anbi12ci 629 . . . . . . . . . . . . . 14 ((𝑦 𝑧𝑧 𝑥) ↔ (𝑥 𝑧𝑧 𝑦))
7675rabbii 3473 . . . . . . . . . . . . 13 {𝑧𝐵 ∣ (𝑦 𝑧𝑧 𝑥)} = {𝑧𝐵 ∣ (𝑥 𝑧𝑧 𝑦)}
7776, 55eqsstrid 4015 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝐵 ∣ (𝑦 𝑧𝑧 𝑥)} ⊆ 𝐴)
7877ancom2s 648 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑥𝐴)) → {𝑧𝐵 ∣ (𝑦 𝑧𝑧 𝑥)} ⊆ 𝐴)
7958, 67, 69, 5, 78ordtrest2NEWlem 31165 . . . . . . . . . 10 (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
80 vex 3497 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ V
8180, 71brcnv 5753 . . . . . . . . . . . . . . . . 17 (𝑤 𝑧𝑧 𝑤)
8281bicomi 226 . . . . . . . . . . . . . . . 16 (𝑧 𝑤𝑤 𝑧)
8382a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑧 𝑤𝑤 𝑧))
8483notbid 320 . . . . . . . . . . . . . 14 (𝜑 → (¬ 𝑧 𝑤 ↔ ¬ 𝑤 𝑧))
8584rabbidv 3480 . . . . . . . . . . . . 13 (𝜑 → {𝑤𝐵 ∣ ¬ 𝑧 𝑤} = {𝑤𝐵 ∣ ¬ 𝑤 𝑧})
8685mpteq2dv 5162 . . . . . . . . . . . 12 (𝜑 → (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}) = (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}))
8786rneqd 5808 . . . . . . . . . . 11 (𝜑 → ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}) = ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}))
88 cnvin 6003 . . . . . . . . . . . . . . 15 ( ∩ (𝐴 × 𝐴)) = ( (𝐴 × 𝐴))
89 cnvxp 6014 . . . . . . . . . . . . . . . 16 (𝐴 × 𝐴) = (𝐴 × 𝐴)
9089ineq2i 4186 . . . . . . . . . . . . . . 15 ( (𝐴 × 𝐴)) = ( ∩ (𝐴 × 𝐴))
9188, 90eqtri 2844 . . . . . . . . . . . . . 14 ( ∩ (𝐴 × 𝐴)) = ( ∩ (𝐴 × 𝐴))
9291fveq2i 6673 . . . . . . . . . . . . 13 (ordTop‘( ∩ (𝐴 × 𝐴))) = (ordTop‘( ∩ (𝐴 × 𝐴)))
936ressprs 30642 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Proset )
944, 5, 93syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾s 𝐴) ∈ Proset )
95 eqid 2821 . . . . . . . . . . . . . . . 16 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
96 eqid 2821 . . . . . . . . . . . . . . . 16 ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
9795, 96ordtcnvNEW 31163 . . . . . . . . . . . . . . 15 ((𝐾s 𝐴) ∈ Proset → (ordTop‘((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))) = (ordTop‘((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))))
9894, 97syl 17 . . . . . . . . . . . . . 14 (𝜑 → (ordTop‘((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))) = (ordTop‘((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))))
996, 7prsss 31159 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))
1004, 5, 99syl2anc 586 . . . . . . . . . . . . . . . . 17 (𝜑 → ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))
101 eqid 2821 . . . . . . . . . . . . . . . . . . . 20 (𝐾s 𝐴) = (𝐾s 𝐴)
102101, 63ressle 16672 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾s 𝐴)))
10318, 102syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (le‘𝐾) = (le‘(𝐾s 𝐴)))
104101, 6ressbas2 16555 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐵𝐴 = (Base‘(𝐾s 𝐴)))
1055, 104syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 = (Base‘(𝐾s 𝐴)))
106105sqxpeqd 5587 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 × 𝐴) = ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
107103, 106ineq12d 4190 . . . . . . . . . . . . . . . . 17 (𝜑 → ((le‘𝐾) ∩ (𝐴 × 𝐴)) = ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
108100, 107eqtrd 2856 . . . . . . . . . . . . . . . 16 (𝜑 → ( ∩ (𝐴 × 𝐴)) = ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
109108cnveqd 5746 . . . . . . . . . . . . . . 15 (𝜑( ∩ (𝐴 × 𝐴)) = ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
110109fveq2d 6674 . . . . . . . . . . . . . 14 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) = (ordTop‘((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))))
111108fveq2d 6674 . . . . . . . . . . . . . 14 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) = (ordTop‘((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))))
11298, 110, 1113eqtr4d 2866 . . . . . . . . . . . . 13 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) = (ordTop‘( ∩ (𝐴 × 𝐴))))
11392, 112syl5reqr 2871 . . . . . . . . . . . 12 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) = (ordTop‘( ∩ (𝐴 × 𝐴))))
114113eleq2d 2898 . . . . . . . . . . 11 (𝜑 → ((𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ (𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
11587, 114raleqbidv 3401 . . . . . . . . . 10 (𝜑 → (∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
11679, 115mpbird 259 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
117 ralunb 4167 . . . . . . . . 9 (∀𝑣 ∈ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ (∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ∧ ∀𝑣 ∈ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
11856, 116, 117sylanbrc 585 . . . . . . . 8 (𝜑 → ∀𝑣 ∈ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
119 ralunb 4167 . . . . . . . 8 (∀𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ (∀𝑣 ∈ {𝐵} (𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ∧ ∀𝑣 ∈ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴)))))
12054, 118, 119sylanbrc 585 . . . . . . 7 (𝜑 → ∀𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))))
121 eqid 2821 . . . . . . . 8 (𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↦ (𝑣𝐴)) = (𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↦ (𝑣𝐴))
122121fmpt 6874 . . . . . . 7 (∀𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))(𝑣𝐴) ∈ (ordTop‘( ∩ (𝐴 × 𝐴))) ↔ (𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↦ (𝑣𝐴)):({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))⟶(ordTop‘( ∩ (𝐴 × 𝐴))))
123120, 122sylib 220 . . . . . 6 (𝜑 → (𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↦ (𝑣𝐴)):({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤})))⟶(ordTop‘( ∩ (𝐴 × 𝐴))))
124123frnd 6521 . . . . 5 (𝜑 → ran (𝑣 ∈ ({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↦ (𝑣𝐴)) ⊆ (ordTop‘( ∩ (𝐴 × 𝐴))))
12537, 124eqsstrd 4005 . . . 4 (𝜑 → (({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴) ⊆ (ordTop‘( ∩ (𝐴 × 𝐴))))
126 tgfiss 21599 . . . 4 (((ordTop‘( ∩ (𝐴 × 𝐴))) ∈ Top ∧ (({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴) ⊆ (ordTop‘( ∩ (𝐴 × 𝐴)))) → (topGen‘(fi‘(({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴))) ⊆ (ordTop‘( ∩ (𝐴 × 𝐴))))
12730, 125, 126syl2anc 586 . . 3 (𝜑 → (topGen‘(fi‘(({𝐵} ∪ (ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑤 𝑧}) ∪ ran (𝑧𝐵 ↦ {𝑤𝐵 ∣ ¬ 𝑧 𝑤}))) ↾t 𝐴))) ⊆ (ordTop‘( ∩ (𝐴 × 𝐴))))
12824, 127eqsstrd 4005 . 2 (𝜑 → ((ordTop‘ ) ↾t 𝐴) ⊆ (ordTop‘( ∩ (𝐴 × 𝐴))))
1299, 128eqssd 3984 1 (𝜑 → (ordTop‘( ∩ (𝐴 × 𝐴))) = ((ordTop‘ ) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  {crab 3142  Vcvv 3494  cun 3934  cin 3935  wss 3936  {csn 4567   cuni 4838   class class class wbr 5066  cmpt 5146   × cxp 5553  ccnv 5554  dom cdm 5555  ran crn 5556  wf 6351  cfv 6355  (class class class)co 7156  ficfi 8874  Basecbs 16483  s cress 16484  lecple 16572  t crest 16694  topGenctg 16711  ordTopcordt 16772   Proset cproset 17536  Posetcpo 17550  Tosetctos 17643  ODualcodu 17738  Topctop 21501  TopOnctopon 21518  TopBasesctb 21553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-dec 12100  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-ple 16585  df-rest 16696  df-topgen 16717  df-ordt 16774  df-proset 17538  df-poset 17556  df-toset 17644  df-odu 17739  df-top 21502  df-topon 21519  df-bases 21554
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator