MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcpre1 Structured version   Visualization version   GIF version

Theorem pcpre1 15741
Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
pclem.2 𝑆 = sup(𝐴, ℝ, < )
Assertion
Ref Expression
pcpre1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 = 0)
Distinct variable groups:   𝑛,𝑁   𝑃,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑆(𝑛)

Proof of Theorem pcpre1
StepHypRef Expression
1 1z 11591 . . . . . . . . . 10 1 ∈ ℤ
2 eleq1 2819 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ∈ ℤ ↔ 1 ∈ ℤ))
31, 2mpbiri 248 . . . . . . . . 9 (𝑁 = 1 → 𝑁 ∈ ℤ)
4 ax-1ne0 10189 . . . . . . . . . 10 1 ≠ 0
5 neeq1 2986 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ≠ 0 ↔ 1 ≠ 0))
64, 5mpbiri 248 . . . . . . . . 9 (𝑁 = 1 → 𝑁 ≠ 0)
73, 6jca 555 . . . . . . . 8 (𝑁 = 1 → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
8 pclem.1 . . . . . . . . 9 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
9 pclem.2 . . . . . . . . 9 𝑆 = sup(𝐴, ℝ, < )
108, 9pcprecl 15738 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
117, 10sylan2 492 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
1211simprd 482 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∥ 𝑁)
13 simpr 479 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑁 = 1)
1412, 13breqtrd 4822 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∥ 1)
15 eluz2nn 11911 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
1615adantr 472 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℕ)
1711simpld 477 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0)
1816, 17nnexpcld 13216 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∈ ℕ)
1918nnzd 11665 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∈ ℤ)
20 1nn 11215 . . . . . 6 1 ∈ ℕ
21 dvdsle 15226 . . . . . 6 (((𝑃𝑆) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝑃𝑆) ∥ 1 → (𝑃𝑆) ≤ 1))
2219, 20, 21sylancl 697 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → ((𝑃𝑆) ∥ 1 → (𝑃𝑆) ≤ 1))
2314, 22mpd 15 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ≤ 1)
2416nncnd 11220 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℂ)
2524exp0d 13188 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃↑0) = 1)
2623, 25breqtrrd 4824 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ≤ (𝑃↑0))
2716nnred 11219 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℝ)
2817nn0zd 11664 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℤ)
29 0zd 11573 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 0 ∈ ℤ)
30 eluz2b2 11946 . . . . . 6 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
3130simprbi 483 . . . . 5 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
3231adantr 472 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 1 < 𝑃)
3327, 28, 29, 32leexp2d 13225 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ (𝑃𝑆) ≤ (𝑃↑0)))
3426, 33mpbird 247 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ≤ 0)
3510simpld 477 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0)
367, 35sylan2 492 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0)
37 nn0le0eq0 11505 . . 3 (𝑆 ∈ ℕ0 → (𝑆 ≤ 0 ↔ 𝑆 = 0))
3836, 37syl 17 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ 𝑆 = 0))
3934, 38mpbid 222 1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  wne 2924  {crab 3046   class class class wbr 4796  cfv 6041  (class class class)co 6805  supcsup 8503  cr 10119  0cc0 10120  1c1 10121   < clt 10258  cle 10259  cn 11204  2c2 11254  0cn0 11476  cz 11561  cuz 11871  cexp 13046  cdvds 15174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8505  df-inf 8506  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-fl 12779  df-seq 12988  df-exp 13047  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-dvds 15175
This theorem is referenced by:  pczpre  15746  pc1  15754
  Copyright terms: Public domain W3C validator