![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pi1xfrval | Structured version Visualization version GIF version |
Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
pi1xfr.p | ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) |
pi1xfr.q | ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) |
pi1xfr.b | ⊢ 𝐵 = (Base‘𝑃) |
pi1xfr.g | ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) |
pi1xfr.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
pi1xfr.f | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pi1xfrval.i | ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) |
pi1xfrval.1 | ⊢ (𝜑 → (𝐹‘1) = (𝐼‘0)) |
pi1xfrval.2 | ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) |
pi1xfrval.a | ⊢ (𝜑 → 𝐴 ∈ ∪ 𝐵) |
Ref | Expression |
---|---|
pi1xfrval | ⊢ (𝜑 → (𝐺‘[𝐴]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1xfrval.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ∪ 𝐵) | |
2 | pi1xfr.g | . . 3 ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) | |
3 | fvex 6239 | . . . 4 ⊢ ( ≃ph‘𝐽) ∈ V | |
4 | ecexg 7791 | . . . 4 ⊢ (( ≃ph‘𝐽) ∈ V → [𝑔]( ≃ph‘𝐽) ∈ V) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → [𝑔]( ≃ph‘𝐽) ∈ V) |
6 | ecexg 7791 | . . . 4 ⊢ (( ≃ph‘𝐽) ∈ V → [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽) ∈ V) | |
7 | 3, 6 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ ∪ 𝐵) → [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽) ∈ V) |
8 | eceq1 7825 | . . 3 ⊢ (𝑔 = 𝐴 → [𝑔]( ≃ph‘𝐽) = [𝐴]( ≃ph‘𝐽)) | |
9 | oveq1 6697 | . . . . 5 ⊢ (𝑔 = 𝐴 → (𝑔(*𝑝‘𝐽)𝐹) = (𝐴(*𝑝‘𝐽)𝐹)) | |
10 | 9 | oveq2d 6706 | . . . 4 ⊢ (𝑔 = 𝐴 → (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) = (𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))) |
11 | 10 | eceq1d 7826 | . . 3 ⊢ (𝑔 = 𝐴 → [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
12 | pi1xfr.p | . . . . 5 ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) | |
13 | pi1xfr.q | . . . . 5 ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) | |
14 | pi1xfr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
15 | pi1xfr.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
16 | pi1xfr.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
17 | pi1xfrval.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) | |
18 | pi1xfrval.1 | . . . . 5 ⊢ (𝜑 → (𝐹‘1) = (𝐼‘0)) | |
19 | pi1xfrval.2 | . . . . 5 ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) | |
20 | 12, 13, 14, 2, 15, 16, 17, 18, 19 | pi1xfrf 22899 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶(Base‘𝑄)) |
21 | ffun 6086 | . . . 4 ⊢ (𝐺:𝐵⟶(Base‘𝑄) → Fun 𝐺) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
23 | 2, 5, 7, 8, 11, 22 | fliftval 6606 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ∪ 𝐵) → (𝐺‘[𝐴]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
24 | 1, 23 | mpdan 703 | 1 ⊢ (𝜑 → (𝐺‘[𝐴]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 〈cop 4216 ∪ cuni 4468 ↦ cmpt 4762 ran crn 5144 Fun wfun 5920 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 [cec 7785 0cc0 9974 1c1 9975 Basecbs 15904 TopOnctopon 20763 Cn ccn 21076 IIcii 22725 ≃phcphtpc 22815 *𝑝cpco 22846 π1 cpi1 22849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-ec 7789 df-qs 7793 df-map 7901 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-ioo 12217 df-icc 12220 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-pt 16152 df-prds 16155 df-xrs 16209 df-qtop 16214 df-imas 16215 df-qus 16216 df-xps 16217 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-mulg 17588 df-cntz 17796 df-cmn 18241 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-cnfld 19795 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cld 20871 df-cn 21079 df-cnp 21080 df-tx 21413 df-hmeo 21606 df-xms 22172 df-ms 22173 df-tms 22174 df-ii 22727 df-htpy 22816 df-phtpy 22817 df-phtpc 22838 df-pco 22851 df-om1 22852 df-pi1 22854 |
This theorem is referenced by: pi1xfr 22901 |
Copyright terms: Public domain | W3C validator |