MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsexp Structured version   Visualization version   GIF version

Theorem prmdvdsexp 15358
Description: A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014.) (Revised by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
prmdvdsexp ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))

Proof of Theorem prmdvdsexp
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6618 . . . . . . 7 (𝑚 = 1 → (𝐴𝑚) = (𝐴↑1))
21breq2d 4630 . . . . . 6 (𝑚 = 1 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴↑1)))
32bibi1d 333 . . . . 5 (𝑚 = 1 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴)))
43imbi2d 330 . . . 4 (𝑚 = 1 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴))))
5 oveq2 6618 . . . . . . 7 (𝑚 = 𝑘 → (𝐴𝑚) = (𝐴𝑘))
65breq2d 4630 . . . . . 6 (𝑚 = 𝑘 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴𝑘)))
76bibi1d 333 . . . . 5 (𝑚 = 𝑘 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴)))
87imbi2d 330 . . . 4 (𝑚 = 𝑘 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴))))
9 oveq2 6618 . . . . . . 7 (𝑚 = (𝑘 + 1) → (𝐴𝑚) = (𝐴↑(𝑘 + 1)))
109breq2d 4630 . . . . . 6 (𝑚 = (𝑘 + 1) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴↑(𝑘 + 1))))
1110bibi1d 333 . . . . 5 (𝑚 = (𝑘 + 1) → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
1211imbi2d 330 . . . 4 (𝑚 = (𝑘 + 1) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
13 oveq2 6618 . . . . . . 7 (𝑚 = 𝑁 → (𝐴𝑚) = (𝐴𝑁))
1413breq2d 4630 . . . . . 6 (𝑚 = 𝑁 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴𝑁)))
1514bibi1d 333 . . . . 5 (𝑚 = 𝑁 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴)))
1615imbi2d 330 . . . 4 (𝑚 = 𝑁 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))))
17 zcn 11333 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1817adantl 482 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ)
1918exp1d 12950 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑1) = 𝐴)
2019breq2d 4630 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴))
21 nnnn0 11250 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
22 expp1 12814 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2318, 21, 22syl2an 494 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2423breq2d 4630 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃 ∥ ((𝐴𝑘) · 𝐴)))
25 simpll 789 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℙ)
26 simpr 477 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
27 zexpcl 12822 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℤ)
2826, 21, 27syl2an 494 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℤ)
29 simplr 791 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℤ)
30 euclemma 15356 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴𝑘) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ ((𝐴𝑘) · 𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
3125, 28, 29, 30syl3anc 1323 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ ((𝐴𝑘) · 𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
3224, 31bitrd 268 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
33 orbi1 741 . . . . . . . . 9 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴) ↔ (𝑃𝐴𝑃𝐴)))
34 oridm 536 . . . . . . . . 9 ((𝑃𝐴𝑃𝐴) ↔ 𝑃𝐴)
3533, 34syl6bb 276 . . . . . . . 8 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴) ↔ 𝑃𝐴))
3635bibi2d 332 . . . . . . 7 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)) ↔ (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
3732, 36syl5ibcom 235 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
3837expcom 451 . . . . 5 (𝑘 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
3938a2d 29 . . . 4 (𝑘 ∈ ℕ → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴)) → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
404, 8, 12, 16, 20, 39nnind 10989 . . 3 (𝑁 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴)))
4140impcom 446 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))
42413impa 1256 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4618  (class class class)co 6610  cc 9885  1c1 9888   + caddc 9890   · cmul 9892  cn 10971  0cn0 11243  cz 11328  cexp 12807  cdvds 14914  cprime 15316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-dvds 14915  df-gcd 15148  df-prm 15317
This theorem is referenced by:  prmdvdsexpb  15359  rpexp  15363  pythagtriplem4  15455  lgsqr  24989  lgsqrmodndvds  24991  2sqlem3  25058  etransclem41  39820  lighneallem4  40847
  Copyright terms: Public domain W3C validator