Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ptrest Structured version   Visualization version   GIF version

Theorem ptrest 34906
Description: Expressing a restriction of a product topology as a product topology. (Contributed by Brendan Leahy, 24-Mar-2019.)
Hypotheses
Ref Expression
ptrest.0 (𝜑𝐴𝑉)
ptrest.1 (𝜑𝐹:𝐴⟶Top)
ptrest.2 ((𝜑𝑘𝐴) → 𝑆𝑊)
Assertion
Ref Expression
ptrest (𝜑 → ((∏t𝐹) ↾t X𝑘𝐴 𝑆) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐹   𝑘,𝑉
Allowed substitution hints:   𝑆(𝑘)   𝑊(𝑘)

Proof of Theorem ptrest
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 firest 16706 . . . 4 (fi‘(({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆)) = ((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)
2 snex 5332 . . . . . . . 8 { (∏t𝐹)} ∈ V
3 ptrest.0 . . . . . . . . . 10 (𝜑𝐴𝑉)
4 fvex 6683 . . . . . . . . . . 11 (𝐹𝑢) ∈ V
54rgenw 3150 . . . . . . . . . 10 𝑢𝐴 (𝐹𝑢) ∈ V
6 eqid 2821 . . . . . . . . . . 11 (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) = (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))
76mpoexxg 7773 . . . . . . . . . 10 ((𝐴𝑉 ∧ ∀𝑢𝐴 (𝐹𝑢) ∈ V) → (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V)
83, 5, 7sylancl 588 . . . . . . . . 9 (𝜑 → (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V)
9 rnexg 7614 . . . . . . . . 9 ((𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V → ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V)
108, 9syl 17 . . . . . . . 8 (𝜑 → ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V)
11 unexg 7472 . . . . . . . 8 (({ (∏t𝐹)} ∈ V ∧ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V) → ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ∈ V)
122, 10, 11sylancr 589 . . . . . . 7 (𝜑 → ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ∈ V)
13 ptrest.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝑆𝑊)
1413ralrimiva 3182 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 𝑆𝑊)
15 ixpexg 8486 . . . . . . . 8 (∀𝑘𝐴 𝑆𝑊X𝑘𝐴 𝑆 ∈ V)
1614, 15syl 17 . . . . . . 7 (𝜑X𝑘𝐴 𝑆 ∈ V)
17 restval 16700 . . . . . . 7 ((({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ∈ V ∧ X𝑘𝐴 𝑆 ∈ V) → (({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆) = ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)))
1812, 16, 17syl2anc 586 . . . . . 6 (𝜑 → (({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆) = ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)))
19 mptun 6494 . . . . . . . . 9 (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)) = ((𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)))
2019rneqi 5807 . . . . . . . 8 ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)) = ran ((𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)))
21 rnun 6004 . . . . . . . 8 ran ((𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆))) = (ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)))
2220, 21eqtri 2844 . . . . . . 7 ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)) = (ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)))
23 elsni 4584 . . . . . . . . . . . . . 14 (𝑥 ∈ { (∏t𝐹)} → 𝑥 = (∏t𝐹))
2423ineq1d 4188 . . . . . . . . . . . . 13 (𝑥 ∈ { (∏t𝐹)} → (𝑥X𝑘𝐴 𝑆) = ( (∏t𝐹) ∩ X𝑘𝐴 𝑆))
2524mpteq2ia 5157 . . . . . . . . . . . 12 (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = (𝑥 ∈ { (∏t𝐹)} ↦ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆))
26 fvex 6683 . . . . . . . . . . . . . 14 (∏t𝐹) ∈ V
2726uniex 7467 . . . . . . . . . . . . 13 (∏t𝐹) ∈ V
2827inex1 5221 . . . . . . . . . . . . 13 ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) ∈ V
29 fmptsn 6929 . . . . . . . . . . . . 13 (( (∏t𝐹) ∈ V ∧ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) ∈ V) → {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩} = (𝑥 ∈ { (∏t𝐹)} ↦ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)))
3027, 28, 29mp2an 690 . . . . . . . . . . . 12 {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩} = (𝑥 ∈ { (∏t𝐹)} ↦ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆))
3125, 30eqtr4i 2847 . . . . . . . . . . 11 (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩}
3231rneqi 5807 . . . . . . . . . 10 ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = ran {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩}
3327rnsnop 6081 . . . . . . . . . 10 ran {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩} = {( (∏t𝐹) ∩ X𝑘𝐴 𝑆)}
3432, 33eqtri 2844 . . . . . . . . 9 ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = {( (∏t𝐹) ∩ X𝑘𝐴 𝑆)}
35 ptrest.1 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴⟶Top)
3635ffvelrnda 6851 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ Top)
37 inss1 4205 . . . . . . . . . . . . . . 15 ( (𝐹𝑘) ∩ 𝑆) ⊆ (𝐹𝑘)
38 eqid 2821 . . . . . . . . . . . . . . . 16 (𝐹𝑘) = (𝐹𝑘)
3938restuni 21770 . . . . . . . . . . . . . . 15 (((𝐹𝑘) ∈ Top ∧ ( (𝐹𝑘) ∩ 𝑆) ⊆ (𝐹𝑘)) → ( (𝐹𝑘) ∩ 𝑆) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆)))
4036, 37, 39sylancl 588 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ( (𝐹𝑘) ∩ 𝑆) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆)))
41 fvex 6683 . . . . . . . . . . . . . . . . 17 (𝐹𝑘) ∈ V
4238restin 21774 . . . . . . . . . . . . . . . . 17 (((𝐹𝑘) ∈ V ∧ 𝑆𝑊) → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑘) ↾t (𝑆 (𝐹𝑘))))
4341, 13, 42sylancr 589 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑘) ↾t (𝑆 (𝐹𝑘))))
44 incom 4178 . . . . . . . . . . . . . . . . 17 (𝑆 (𝐹𝑘)) = ( (𝐹𝑘) ∩ 𝑆)
4544oveq2i 7167 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ↾t (𝑆 (𝐹𝑘))) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆))
4643, 45syl6eq 2872 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆)))
4746unieqd 4852 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆)))
4840, 47eqtr4d 2859 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ( (𝐹𝑘) ∩ 𝑆) = ((𝐹𝑘) ↾t 𝑆))
4948ixpeq2dva 8476 . . . . . . . . . . . 12 (𝜑X𝑘𝐴 ( (𝐹𝑘) ∩ 𝑆) = X𝑘𝐴 ((𝐹𝑘) ↾t 𝑆))
50 ixpin 8487 . . . . . . . . . . . 12 X𝑘𝐴 ( (𝐹𝑘) ∩ 𝑆) = (X𝑘𝐴 (𝐹𝑘) ∩ X𝑘𝐴 𝑆)
51 nfcv 2977 . . . . . . . . . . . . . 14 𝑦 ((𝐹𝑘) ↾t 𝑆)
52 nfcv 2977 . . . . . . . . . . . . . . . 16 𝑘(𝐹𝑦)
53 nfcv 2977 . . . . . . . . . . . . . . . 16 𝑘t
54 nfcsb1v 3907 . . . . . . . . . . . . . . . 16 𝑘𝑦 / 𝑘𝑆
5552, 53, 54nfov 7186 . . . . . . . . . . . . . . 15 𝑘((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆)
5655nfuni 4845 . . . . . . . . . . . . . 14 𝑘 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆)
57 fveq2 6670 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → (𝐹𝑘) = (𝐹𝑦))
58 csbeq1a 3897 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦𝑆 = 𝑦 / 𝑘𝑆)
5957, 58oveq12d 7174 . . . . . . . . . . . . . . 15 (𝑘 = 𝑦 → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6059unieqd 4852 . . . . . . . . . . . . . 14 (𝑘 = 𝑦 ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6151, 56, 60cbvixp 8478 . . . . . . . . . . . . 13 X𝑘𝐴 ((𝐹𝑘) ↾t 𝑆) = X𝑦𝐴 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆)
62 ixpeq2 8475 . . . . . . . . . . . . . 14 (∀𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆) → X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = X𝑦𝐴 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
63 ovex 7189 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆) ∈ V
64 nfcv 2977 . . . . . . . . . . . . . . . . 17 𝑘𝑦
65 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)) = (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))
6664, 55, 59, 65fvmptf 6789 . . . . . . . . . . . . . . . 16 ((𝑦𝐴 ∧ ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆) ∈ V) → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6763, 66mpan2 689 . . . . . . . . . . . . . . 15 (𝑦𝐴 → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6867unieqd 4852 . . . . . . . . . . . . . 14 (𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6962, 68mprg 3152 . . . . . . . . . . . . 13 X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = X𝑦𝐴 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆)
7061, 69eqtr4i 2847 . . . . . . . . . . . 12 X𝑘𝐴 ((𝐹𝑘) ↾t 𝑆) = X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦)
7149, 50, 703eqtr3g 2879 . . . . . . . . . . 11 (𝜑 → (X𝑘𝐴 (𝐹𝑘) ∩ X𝑘𝐴 𝑆) = X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦))
72 eqid 2821 . . . . . . . . . . . . . 14 (∏t𝐹) = (∏t𝐹)
7372ptuni 22202 . . . . . . . . . . . . 13 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
743, 35, 73syl2anc 586 . . . . . . . . . . . 12 (𝜑X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
7574ineq1d 4188 . . . . . . . . . . 11 (𝜑 → (X𝑘𝐴 (𝐹𝑘) ∩ X𝑘𝐴 𝑆) = ( (∏t𝐹) ∩ X𝑘𝐴 𝑆))
76 resttop 21768 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ Top ∧ 𝑆𝑊) → ((𝐹𝑘) ↾t 𝑆) ∈ Top)
7736, 13, 76syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝐹𝑘) ↾t 𝑆) ∈ Top)
7877fmpttd 6879 . . . . . . . . . . . 12 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)):𝐴⟶Top)
79 eqid 2821 . . . . . . . . . . . . 13 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))
8079ptuni 22202 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)):𝐴⟶Top) → X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
813, 78, 80syl2anc 586 . . . . . . . . . . 11 (𝜑X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
8271, 75, 813eqtr3d 2864 . . . . . . . . . 10 (𝜑 → ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
8382sneqd 4579 . . . . . . . . 9 (𝜑 → {( (∏t𝐹) ∩ X𝑘𝐴 𝑆)} = { (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))})
8434, 83syl5eq 2868 . . . . . . . 8 (𝜑 → ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = { (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))})
85 vex 3497 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤 ∈ V
8685elixp 8468 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤X𝑘𝐴 𝑆 ↔ (𝑤 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑤𝑘) ∈ 𝑆))
8786simprbi 499 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤X𝑘𝐴 𝑆 → ∀𝑘𝐴 (𝑤𝑘) ∈ 𝑆)
88 nfcsb1v 3907 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘𝑢 / 𝑘𝑆
8988nfel2 2996 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝑤𝑢) ∈ 𝑢 / 𝑘𝑆
90 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑢 → (𝑤𝑘) = (𝑤𝑢))
91 csbeq1a 3897 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑢𝑆 = 𝑢 / 𝑘𝑆)
9290, 91eleq12d 2907 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑢 → ((𝑤𝑘) ∈ 𝑆 ↔ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))
9389, 92rspc 3611 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢𝐴 → (∀𝑘𝐴 (𝑤𝑘) ∈ 𝑆 → (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))
9487, 93syl5 34 . . . . . . . . . . . . . . . . . . . . 21 (𝑢𝐴 → (𝑤X𝑘𝐴 𝑆 → (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))
9594pm4.71d 564 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝐴 → (𝑤X𝑘𝐴 𝑆 ↔ (𝑤X𝑘𝐴 𝑆 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)))
9695anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑢𝐴 → (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆) ↔ ((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ (𝑤X𝑘𝐴 𝑆 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))))
97 an4 654 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ (𝑤X𝑘𝐴 𝑆 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)) ↔ ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ ((𝑤𝑢) ∈ 𝑣 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)))
98 elin 4169 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆) ↔ ((𝑤𝑢) ∈ 𝑣 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))
9998anbi2i 624 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)) ↔ ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ ((𝑤𝑢) ∈ 𝑣 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)))
10097, 99bitr4i 280 . . . . . . . . . . . . . . . . . . 19 (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ (𝑤X𝑘𝐴 𝑆 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)) ↔ ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)))
10196, 100syl6bb 289 . . . . . . . . . . . . . . . . . 18 (𝑢𝐴 → (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆) ↔ ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))))
102 elin 4169 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) ↔ (𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆))
10382eleq2d 2898 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑤 ∈ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) ↔ 𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))))
104102, 103syl5bbr 287 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ↔ 𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))))
105104anbi1d 631 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)) ↔ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))))
106101, 105sylan9bbr 513 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝐴) → (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆) ↔ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))))
107106abbidv 2885 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝐴) → {𝑤 ∣ ((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆)} = {𝑤 ∣ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))})
108 eqid 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑤 (∏t𝐹) ↦ (𝑤𝑢)) = (𝑤 (∏t𝐹) ↦ (𝑤𝑢))
109108mptpreima 6092 . . . . . . . . . . . . . . . . . . 19 ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) = {𝑤 (∏t𝐹) ∣ (𝑤𝑢) ∈ 𝑣}
110 df-rab 3147 . . . . . . . . . . . . . . . . . . 19 {𝑤 (∏t𝐹) ∣ (𝑤𝑢) ∈ 𝑣} = {𝑤 ∣ (𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣)}
111109, 110eqtr2i 2845 . . . . . . . . . . . . . . . . . 18 {𝑤 ∣ (𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣)} = ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)
112 abid2 2957 . . . . . . . . . . . . . . . . . 18 {𝑤𝑤X𝑘𝐴 𝑆} = X𝑘𝐴 𝑆
113111, 112ineq12i 4187 . . . . . . . . . . . . . . . . 17 ({𝑤 ∣ (𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣)} ∩ {𝑤𝑤X𝑘𝐴 𝑆}) = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)
114 inab 4271 . . . . . . . . . . . . . . . . 17 ({𝑤 ∣ (𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣)} ∩ {𝑤𝑤X𝑘𝐴 𝑆}) = {𝑤 ∣ ((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆)}
115113, 114eqtr3i 2846 . . . . . . . . . . . . . . . 16 (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) = {𝑤 ∣ ((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆)}
116 eqid 2821 . . . . . . . . . . . . . . . . . 18 (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) = (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢))
117116mptpreima 6092 . . . . . . . . . . . . . . . . 17 ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) = {𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∣ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)}
118 df-rab 3147 . . . . . . . . . . . . . . . . 17 {𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∣ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)} = {𝑤 ∣ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))}
119117, 118eqtri 2844 . . . . . . . . . . . . . . . 16 ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) = {𝑤 ∣ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))}
120107, 115, 1193eqtr4g 2881 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝐴) → (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)))
121120eqeq2d 2832 . . . . . . . . . . . . . 14 ((𝜑𝑢𝐴) → (𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ 𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆))))
122121rexbidv 3297 . . . . . . . . . . . . 13 ((𝜑𝑢𝐴) → (∃𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑣 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆))))
123 ineq1 4181 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑦 → (𝑣𝑢 / 𝑘𝑆) = (𝑦𝑢 / 𝑘𝑆))
124123imaeq2d 5929 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆)))
125124eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → (𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) ↔ 𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
126125cbvrexvw 3450 . . . . . . . . . . . . 13 (∃𝑣 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆)))
127122, 126syl6bb 289 . . . . . . . . . . . 12 ((𝜑𝑢𝐴) → (∃𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
128 vex 3497 . . . . . . . . . . . . . . 15 𝑦 ∈ V
129128inex1 5221 . . . . . . . . . . . . . 14 (𝑦𝑢 / 𝑘𝑆) ∈ V
130129a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑢𝐴) ∧ 𝑦 ∈ (𝐹𝑢)) → (𝑦𝑢 / 𝑘𝑆) ∈ V)
131 ovex 7189 . . . . . . . . . . . . . . . . 17 ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆) ∈ V
132 nfcv 2977 . . . . . . . . . . . . . . . . . 18 𝑘𝑢
133 nfcv 2977 . . . . . . . . . . . . . . . . . . 19 𝑘(𝐹𝑢)
134133, 53, 88nfov 7186 . . . . . . . . . . . . . . . . . 18 𝑘((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆)
135 fveq2 6670 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑢 → (𝐹𝑘) = (𝐹𝑢))
136135, 91oveq12d 7174 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆))
137132, 134, 136, 65fvmptf 6789 . . . . . . . . . . . . . . . . 17 ((𝑢𝐴 ∧ ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆) ∈ V) → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) = ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆))
138131, 137mpan2 689 . . . . . . . . . . . . . . . 16 (𝑢𝐴 → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) = ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆))
139138adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝐴) → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) = ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆))
140139eleq2d 2898 . . . . . . . . . . . . . 14 ((𝜑𝑢𝐴) → (𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↔ 𝑣 ∈ ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆)))
141 nfv 1915 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑢𝐴)
142 nfcsb1v 3907 . . . . . . . . . . . . . . . . . 18 𝑘𝑢 / 𝑘𝑊
14388, 142nfel 2992 . . . . . . . . . . . . . . . . 17 𝑘𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊
144141, 143nfim 1897 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑢𝐴) → 𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊)
145 eleq1w 2895 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 → (𝑘𝐴𝑢𝐴))
146145anbi2d 630 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑢 → ((𝜑𝑘𝐴) ↔ (𝜑𝑢𝐴)))
147 csbeq1a 3897 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢𝑊 = 𝑢 / 𝑘𝑊)
14891, 147eleq12d 2907 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑢 → (𝑆𝑊𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊))
149146, 148imbi12d 347 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑢 → (((𝜑𝑘𝐴) → 𝑆𝑊) ↔ ((𝜑𝑢𝐴) → 𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊)))
150144, 149, 13chvarfv 2242 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝐴) → 𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊)
151 elrest 16701 . . . . . . . . . . . . . . 15 (((𝐹𝑢) ∈ V ∧ 𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊) → (𝑣 ∈ ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑣 = (𝑦𝑢 / 𝑘𝑆)))
1524, 150, 151sylancr 589 . . . . . . . . . . . . . 14 ((𝜑𝑢𝐴) → (𝑣 ∈ ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑣 = (𝑦𝑢 / 𝑘𝑆)))
153140, 152bitrd 281 . . . . . . . . . . . . 13 ((𝜑𝑢𝐴) → (𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑣 = (𝑦𝑢 / 𝑘𝑆)))
154 imaeq2 5925 . . . . . . . . . . . . . . 15 (𝑣 = (𝑦𝑢 / 𝑘𝑆) → ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣) = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆)))
155154eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑣 = (𝑦𝑢 / 𝑘𝑆) → (𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣) ↔ 𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
156155adantl 484 . . . . . . . . . . . . 13 (((𝜑𝑢𝐴) ∧ 𝑣 = (𝑦𝑢 / 𝑘𝑆)) → (𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣) ↔ 𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
157130, 153, 156rexxfr2d 5312 . . . . . . . . . . . 12 ((𝜑𝑢𝐴) → (∃𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
158127, 157bitr4d 284 . . . . . . . . . . 11 ((𝜑𝑢𝐴) → (∃𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))
159158rexbidva 3296 . . . . . . . . . 10 (𝜑 → (∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))
160159abbidv 2885 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)} = {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)})
161 eqid 2821 . . . . . . . . . . 11 (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)) = (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆))
162161rnmpt 5827 . . . . . . . . . 10 ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)) = {𝑦 ∣ ∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆)}
163 nfre1 3306 . . . . . . . . . . 11 𝑥𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆)
164 nfv 1915 . . . . . . . . . . 11 𝑦𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)
16527mptex 6986 . . . . . . . . . . . . . . . 16 (𝑤 (∏t𝐹) ↦ (𝑤𝑢)) ∈ V
166165cnvex 7630 . . . . . . . . . . . . . . 15 (𝑤 (∏t𝐹) ↦ (𝑤𝑢)) ∈ V
167166imaex 7621 . . . . . . . . . . . . . 14 ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∈ V
168167rgen2w 3151 . . . . . . . . . . . . 13 𝑢𝐴𝑣 ∈ (𝐹𝑢)((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∈ V
169 ineq1 4181 . . . . . . . . . . . . . . 15 (𝑥 = ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) → (𝑥X𝑘𝐴 𝑆) = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆))
170169eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑥 = ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) → (𝑦 = (𝑥X𝑘𝐴 𝑆) ↔ 𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
1716, 170rexrnmpo 7290 . . . . . . . . . . . . 13 (∀𝑢𝐴𝑣 ∈ (𝐹𝑢)((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∈ V → (∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
172168, 171ax-mp 5 . . . . . . . . . . . 12 (∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆))
173 eqeq1 2825 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ 𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
1741732rexbidv 3300 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
175172, 174syl5bb 285 . . . . . . . . . . 11 (𝑦 = 𝑥 → (∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
176163, 164, 175cbvabw 2890 . . . . . . . . . 10 {𝑦 ∣ ∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆)} = {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)}
177162, 176eqtri 2844 . . . . . . . . 9 ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)) = {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)}
178 eqid 2821 . . . . . . . . . 10 (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)) = (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))
179178rnmpo 7284 . . . . . . . . 9 ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)) = {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)}
180160, 177, 1793eqtr4g 2881 . . . . . . . 8 (𝜑 → ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)) = ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))
18184, 180uneq12d 4140 . . . . . . 7 (𝜑 → (ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆))) = ({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))
18222, 181syl5eq 2868 . . . . . 6 (𝜑 → ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)) = ({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))
18318, 182eqtrd 2856 . . . . 5 (𝜑 → (({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆) = ({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))
184183fveq2d 6674 . . . 4 (𝜑 → (fi‘(({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆)) = (fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))))
1851, 184syl5eqr 2870 . . 3 (𝜑 → ((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆) = (fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))))
186185fveq2d 6674 . 2 (𝜑 → (topGen‘((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)) = (topGen‘(fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))))
187 eqid 2821 . . . . . 6 (∏t𝐹) = (∏t𝐹)
18872, 187, 6ptval2 22209 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) = (topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))))
1893, 35, 188syl2anc 586 . . . 4 (𝜑 → (∏t𝐹) = (topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))))
190189oveq1d 7171 . . 3 (𝜑 → ((∏t𝐹) ↾t X𝑘𝐴 𝑆) = ((topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))) ↾t X𝑘𝐴 𝑆))
191 fvex 6683 . . . 4 (fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ∈ V
192 tgrest 21767 . . . 4 (((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ∈ V ∧ X𝑘𝐴 𝑆 ∈ V) → (topGen‘((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)) = ((topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))) ↾t X𝑘𝐴 𝑆))
193191, 16, 192sylancr 589 . . 3 (𝜑 → (topGen‘((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)) = ((topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))) ↾t X𝑘𝐴 𝑆))
194190, 193eqtr4d 2859 . 2 (𝜑 → ((∏t𝐹) ↾t X𝑘𝐴 𝑆) = (topGen‘((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)))
195 eqid 2821 . . . 4 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))
19679, 195, 178ptval2 22209 . . 3 ((𝐴𝑉 ∧ (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)):𝐴⟶Top) → (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) = (topGen‘(fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))))
1973, 78, 196syl2anc 586 . 2 (𝜑 → (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) = (topGen‘(fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))))
198186, 194, 1973eqtr4d 2866 1 (𝜑 → ((∏t𝐹) ↾t X𝑘𝐴 𝑆) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2799  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  csb 3883  cun 3934  cin 3935  wss 3936  {csn 4567  cop 4573   cuni 4838  cmpt 5146  ccnv 5554  ran crn 5556  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  Xcixp 8461  ficfi 8874  t crest 16694  topGenctg 16711  tcpt 16712  Topctop 21501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-ixp 8462  df-en 8510  df-dom 8511  df-fin 8513  df-fi 8875  df-rest 16696  df-topgen 16717  df-pt 16718  df-top 21502  df-topon 21519  df-bases 21554
This theorem is referenced by:  poimirlem30  34937
  Copyright terms: Public domain W3C validator