MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrecl Structured version   Visualization version   GIF version

Theorem rlimrecl 14502
Description: The limit of a real sequence is real. (Contributed by Mario Carneiro, 9-May-2016.)
Hypotheses
Ref Expression
rlimcld2.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimcld2.2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
rlimrecl.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
rlimrecl (𝜑𝐶 ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rlimrecl
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcld2.1 . 2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
2 rlimcld2.2 . 2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
3 ax-resscn 10177 . . 3 ℝ ⊆ ℂ
43a1i 11 . 2 (𝜑 → ℝ ⊆ ℂ)
5 eldifi 3867 . . . . . 6 (𝑦 ∈ (ℂ ∖ ℝ) → 𝑦 ∈ ℂ)
65adantl 473 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → 𝑦 ∈ ℂ)
76imcld 14126 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ∈ ℝ)
87recnd 10252 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ∈ ℂ)
9 eldifn 3868 . . . . 5 (𝑦 ∈ (ℂ ∖ ℝ) → ¬ 𝑦 ∈ ℝ)
109adantl 473 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → ¬ 𝑦 ∈ ℝ)
11 reim0b 14050 . . . . . 6 (𝑦 ∈ ℂ → (𝑦 ∈ ℝ ↔ (ℑ‘𝑦) = 0))
126, 11syl 17 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (𝑦 ∈ ℝ ↔ (ℑ‘𝑦) = 0))
1312necon3bbid 2961 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (¬ 𝑦 ∈ ℝ ↔ (ℑ‘𝑦) ≠ 0))
1410, 13mpbid 222 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ≠ 0)
158, 14absrpcld 14378 . 2 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (abs‘(ℑ‘𝑦)) ∈ ℝ+)
166adantr 472 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
17 simpr 479 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1817recnd 10252 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
1916, 18subcld 10576 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (𝑦𝑧) ∈ ℂ)
20 absimle 14240 . . . 4 ((𝑦𝑧) ∈ ℂ → (abs‘(ℑ‘(𝑦𝑧))) ≤ (abs‘(𝑦𝑧)))
2119, 20syl 17 . . 3 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘(𝑦𝑧))) ≤ (abs‘(𝑦𝑧)))
2216, 18imsubd 14148 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘(𝑦𝑧)) = ((ℑ‘𝑦) − (ℑ‘𝑧)))
23 reim0 14049 . . . . . . 7 (𝑧 ∈ ℝ → (ℑ‘𝑧) = 0)
2423adantl 473 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑧) = 0)
2524oveq2d 6821 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → ((ℑ‘𝑦) − (ℑ‘𝑧)) = ((ℑ‘𝑦) − 0))
268adantr 472 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑦) ∈ ℂ)
2726subid1d 10565 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → ((ℑ‘𝑦) − 0) = (ℑ‘𝑦))
2822, 25, 273eqtrrd 2791 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑦) = (ℑ‘(𝑦𝑧)))
2928fveq2d 6348 . . 3 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘𝑦)) = (abs‘(ℑ‘(𝑦𝑧))))
3018, 16abssubd 14383 . . 3 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
3121, 29, 303brtr4d 4828 . 2 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘𝑦)) ≤ (abs‘(𝑧𝑦)))
32 rlimrecl.3 . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
331, 2, 4, 15, 31, 32rlimcld2 14500 1 (𝜑𝐶 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  wne 2924  cdif 3704  wss 3707   class class class wbr 4796  cmpt 4873  cfv 6041  (class class class)co 6805  supcsup 8503  cc 10118  cr 10119  0cc0 10120  +∞cpnf 10255  *cxr 10257   < clt 10258  cle 10259  cmin 10450  cim 14029  abscabs 14165  𝑟 crli 14407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8505  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-seq 12988  df-exp 13047  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-rlim 14411
This theorem is referenced by:  rlimge0  14503  climrecl  14505  rlimle  14569  divsqrtsumo1  24901  mulog2sumlem1  25414
  Copyright terms: Public domain W3C validator