Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrecl Structured version   Visualization version   GIF version

Theorem rlimrecl 14502
 Description: The limit of a real sequence is real. (Contributed by Mario Carneiro, 9-May-2016.)
Hypotheses
Ref Expression
rlimcld2.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimcld2.2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
rlimrecl.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
rlimrecl (𝜑𝐶 ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rlimrecl
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcld2.1 . 2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
2 rlimcld2.2 . 2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
3 ax-resscn 10177 . . 3 ℝ ⊆ ℂ
43a1i 11 . 2 (𝜑 → ℝ ⊆ ℂ)
5 eldifi 3867 . . . . . 6 (𝑦 ∈ (ℂ ∖ ℝ) → 𝑦 ∈ ℂ)
65adantl 473 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → 𝑦 ∈ ℂ)
76imcld 14126 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ∈ ℝ)
87recnd 10252 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ∈ ℂ)
9 eldifn 3868 . . . . 5 (𝑦 ∈ (ℂ ∖ ℝ) → ¬ 𝑦 ∈ ℝ)
109adantl 473 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → ¬ 𝑦 ∈ ℝ)
11 reim0b 14050 . . . . . 6 (𝑦 ∈ ℂ → (𝑦 ∈ ℝ ↔ (ℑ‘𝑦) = 0))
126, 11syl 17 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (𝑦 ∈ ℝ ↔ (ℑ‘𝑦) = 0))
1312necon3bbid 2961 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (¬ 𝑦 ∈ ℝ ↔ (ℑ‘𝑦) ≠ 0))
1410, 13mpbid 222 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ≠ 0)
158, 14absrpcld 14378 . 2 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (abs‘(ℑ‘𝑦)) ∈ ℝ+)
166adantr 472 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
17 simpr 479 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1817recnd 10252 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
1916, 18subcld 10576 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (𝑦𝑧) ∈ ℂ)
20 absimle 14240 . . . 4 ((𝑦𝑧) ∈ ℂ → (abs‘(ℑ‘(𝑦𝑧))) ≤ (abs‘(𝑦𝑧)))
2119, 20syl 17 . . 3 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘(𝑦𝑧))) ≤ (abs‘(𝑦𝑧)))
2216, 18imsubd 14148 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘(𝑦𝑧)) = ((ℑ‘𝑦) − (ℑ‘𝑧)))
23 reim0 14049 . . . . . . 7 (𝑧 ∈ ℝ → (ℑ‘𝑧) = 0)
2423adantl 473 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑧) = 0)
2524oveq2d 6821 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → ((ℑ‘𝑦) − (ℑ‘𝑧)) = ((ℑ‘𝑦) − 0))
268adantr 472 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑦) ∈ ℂ)
2726subid1d 10565 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → ((ℑ‘𝑦) − 0) = (ℑ‘𝑦))
2822, 25, 273eqtrrd 2791 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑦) = (ℑ‘(𝑦𝑧)))
2928fveq2d 6348 . . 3 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘𝑦)) = (abs‘(ℑ‘(𝑦𝑧))))
3018, 16abssubd 14383 . . 3 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
3121, 29, 303brtr4d 4828 . 2 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘𝑦)) ≤ (abs‘(𝑧𝑦)))
32 rlimrecl.3 . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
331, 2, 4, 15, 31, 32rlimcld2 14500 1 (𝜑𝐶 ∈ ℝ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1624   ∈ wcel 2131   ≠ wne 2924   ∖ cdif 3704   ⊆ wss 3707   class class class wbr 4796   ↦ cmpt 4873  ‘cfv 6041  (class class class)co 6805  supcsup 8503  ℂcc 10118  ℝcr 10119  0cc0 10120  +∞cpnf 10255  ℝ*cxr 10257   < clt 10258   ≤ cle 10259   − cmin 10450  ℑcim 14029  abscabs 14165   ⇝𝑟 crli 14407 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8505  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-seq 12988  df-exp 13047  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-rlim 14411 This theorem is referenced by:  rlimge0  14503  climrecl  14505  rlimle  14569  divsqrtsumo1  24901  mulog2sumlem1  25414
 Copyright terms: Public domain W3C validator