MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatcrng Structured version   Visualization version   GIF version

Theorem scmatcrng 20246
Description: The subring of scalar matrices (over a commutative ring) is a commutative ring. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
scmatcrng.c 𝐶 = (𝐴s 𝑆)
Assertion
Ref Expression
scmatcrng ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CRing)

Proof of Theorem scmatcrng
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 18479 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 scmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 scmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 scmatid.e . . . . 5 𝐸 = (Base‘𝑅)
5 scmatid.0 . . . . 5 0 = (0g𝑅)
6 scmatid.s . . . . 5 𝑆 = (𝑁 ScMat 𝑅)
72, 3, 4, 5, 6scmatsrng 20245 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐴))
81, 7sylan2 491 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ (SubRing‘𝐴))
9 scmatcrng.c . . . 4 𝐶 = (𝐴s 𝑆)
109subrgring 18704 . . 3 (𝑆 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring)
118, 10syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ Ring)
12 simp1lr 1123 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ CRing)
13 eqid 2621 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
14 simp2 1060 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
15 simp3 1061 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
162, 13, 6scmatmat 20234 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝑆𝑥 ∈ (Base‘𝐴)))
1716imp 445 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐴))
1817adantrr 752 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐴))
19183ad2ant1 1080 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑥 ∈ (Base‘𝐴))
202, 4, 13, 14, 15, 19matecld 20151 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑥𝑏) ∈ 𝐸)
212, 13, 6scmatmat 20234 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝑆𝑦 ∈ (Base‘𝐴)))
2221imp 445 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐴))
2322adantrl 751 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐴))
24233ad2ant1 1080 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → 𝑦 ∈ (Base‘𝐴))
252, 4, 13, 14, 15, 24matecld 20151 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑦𝑏) ∈ 𝐸)
26 eqid 2621 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
274, 26crngcom 18483 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑎𝑥𝑏) ∈ 𝐸 ∧ (𝑎𝑦𝑏) ∈ 𝐸) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2812, 20, 25, 27syl3anc 1323 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2928ifeq1d 4076 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 ) = if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 ))
3029mpt2eq3dva 6672 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
311anim2i 592 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3231adantr 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
33 eqid 2621 . . . . . . . . . 10 (𝑁 DMat 𝑅) = (𝑁 DMat 𝑅)
342, 3, 4, 5, 6, 33scmatdmat 20240 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆𝑥 ∈ (𝑁 DMat 𝑅)))
351, 34sylan2 491 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝑆𝑥 ∈ (𝑁 DMat 𝑅)))
362, 3, 4, 5, 6, 33scmatdmat 20240 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆𝑦 ∈ (𝑁 DMat 𝑅)))
371, 36sylan2 491 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝑆𝑦 ∈ (𝑁 DMat 𝑅)))
3835, 37anim12d 585 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((𝑥𝑆𝑦𝑆) → (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅))))
3938imp 445 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅)))
402, 3, 5, 33dmatmul 20222 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (𝑁 DMat 𝑅) ∧ 𝑦 ∈ (𝑁 DMat 𝑅))) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
4132, 39, 40syl2anc 692 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
4239ancomd 467 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑦 ∈ (𝑁 DMat 𝑅) ∧ 𝑥 ∈ (𝑁 DMat 𝑅)))
432, 3, 5, 33dmatmul 20222 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (𝑁 DMat 𝑅) ∧ 𝑥 ∈ (𝑁 DMat 𝑅))) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
4432, 42, 43syl2anc 692 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
4530, 41, 443eqtr4d 2665 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
4645ralrimivva 2965 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
479subrgbas 18710 . . . . . 6 (𝑆 ∈ (SubRing‘𝐴) → 𝑆 = (Base‘𝐶))
4847eqcomd 2627 . . . . 5 (𝑆 ∈ (SubRing‘𝐴) → (Base‘𝐶) = 𝑆)
49 eqid 2621 . . . . . . . . . 10 (.r𝐴) = (.r𝐴)
509, 49ressmulr 15927 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝐶))
5150eqcomd 2627 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝐴) → (.r𝐶) = (.r𝐴))
5251oveqd 6621 . . . . . . 7 (𝑆 ∈ (SubRing‘𝐴) → (𝑥(.r𝐶)𝑦) = (𝑥(.r𝐴)𝑦))
5351oveqd 6621 . . . . . . 7 (𝑆 ∈ (SubRing‘𝐴) → (𝑦(.r𝐶)𝑥) = (𝑦(.r𝐴)𝑥))
5452, 53eqeq12d 2636 . . . . . 6 (𝑆 ∈ (SubRing‘𝐴) → ((𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5548, 54raleqbidv 3141 . . . . 5 (𝑆 ∈ (SubRing‘𝐴) → (∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5648, 55raleqbidv 3141 . . . 4 (𝑆 ∈ (SubRing‘𝐴) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
578, 56syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5846, 57mpbird 247 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
59 eqid 2621 . . 3 (Base‘𝐶) = (Base‘𝐶)
60 eqid 2621 . . 3 (.r𝐶) = (.r𝐶)
6159, 60iscrng2 18484 . 2 (𝐶 ∈ CRing ↔ (𝐶 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥)))
6211, 58, 61sylanbrc 697 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  ifcif 4058  cfv 5847  (class class class)co 6604  cmpt2 6606  Fincfn 7899  Basecbs 15781  s cress 15782  .rcmulr 15863  0gc0g 16021  Ringcrg 18468  CRingccrg 18469  SubRingcsubrg 18697   Mat cmat 20132   DMat cdmat 20213   ScMat cscmat 20214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-ot 4157  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-hom 15887  df-cco 15888  df-0g 16023  df-gsum 16024  df-prds 16029  df-pws 16031  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-subrg 18699  df-lmod 18786  df-lss 18852  df-sra 19091  df-rgmod 19092  df-dsmm 19995  df-frlm 20010  df-mamu 20109  df-mat 20133  df-dmat 20215  df-scmat 20216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator