MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgga Structured version   Visualization version   GIF version

Theorem subgga 17779
Description: A subgroup acts on its parent group. (Contributed by Jeff Hankins, 13-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
subgga.1 𝑋 = (Base‘𝐺)
subgga.2 + = (+g𝐺)
subgga.3 𝐻 = (𝐺s 𝑌)
subgga.4 𝐹 = (𝑥𝑌, 𝑦𝑋 ↦ (𝑥 + 𝑦))
Assertion
Ref Expression
subgga (𝑌 ∈ (SubGrp‘𝐺) → 𝐹 ∈ (𝐻 GrpAct 𝑋))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem subgga
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgga.3 . . . 4 𝐻 = (𝐺s 𝑌)
21subggrp 17644 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
3 subgga.1 . . . 4 𝑋 = (Base‘𝐺)
4 fvex 6239 . . . 4 (Base‘𝐺) ∈ V
53, 4eqeltri 2726 . . 3 𝑋 ∈ V
62, 5jctir 560 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝐻 ∈ Grp ∧ 𝑋 ∈ V))
7 subgrcl 17646 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
87adantr 480 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝐺 ∈ Grp)
93subgss 17642 . . . . . . . . 9 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
109sselda 3636 . . . . . . . 8 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑌) → 𝑥𝑋)
1110adantrr 753 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝑥𝑋)
12 simprr 811 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝑦𝑋)
13 subgga.2 . . . . . . . 8 + = (+g𝐺)
143, 13grpcl 17477 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥 + 𝑦) ∈ 𝑋)
158, 11, 12, 14syl3anc 1366 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → (𝑥 + 𝑦) ∈ 𝑋)
1615ralrimivva 3000 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → ∀𝑥𝑌𝑦𝑋 (𝑥 + 𝑦) ∈ 𝑋)
17 subgga.4 . . . . . 6 𝐹 = (𝑥𝑌, 𝑦𝑋 ↦ (𝑥 + 𝑦))
1817fmpt2 7282 . . . . 5 (∀𝑥𝑌𝑦𝑋 (𝑥 + 𝑦) ∈ 𝑋𝐹:(𝑌 × 𝑋)⟶𝑋)
1916, 18sylib 208 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹:(𝑌 × 𝑋)⟶𝑋)
201subgbas 17645 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 = (Base‘𝐻))
2120xpeq1d 5172 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → (𝑌 × 𝑋) = ((Base‘𝐻) × 𝑋))
2221feq2d 6069 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝐹:(𝑌 × 𝑋)⟶𝑋𝐹:((Base‘𝐻) × 𝑋)⟶𝑋))
2319, 22mpbid 222 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹:((Base‘𝐻) × 𝑋)⟶𝑋)
24 eqid 2651 . . . . . . . 8 (0g𝐺) = (0g𝐺)
2524subg0cl 17649 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑌)
26 oveq12 6699 . . . . . . . 8 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑢) → (𝑥 + 𝑦) = ((0g𝐺) + 𝑢))
27 ovex 6718 . . . . . . . 8 ((0g𝐺) + 𝑢) ∈ V
2826, 17, 27ovmpt2a 6833 . . . . . . 7 (((0g𝐺) ∈ 𝑌𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐺) + 𝑢))
2925, 28sylan 487 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐺) + 𝑢))
301, 24subg0 17647 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
3130oveq1d 6705 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → ((0g𝐺)𝐹𝑢) = ((0g𝐻)𝐹𝑢))
3231adantr 480 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐻)𝐹𝑢))
333, 13, 24grplid 17499 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑢𝑋) → ((0g𝐺) + 𝑢) = 𝑢)
347, 33sylan 487 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺) + 𝑢) = 𝑢)
3529, 32, 343eqtr3d 2693 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐻)𝐹𝑢) = 𝑢)
367ad2antrr 762 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝐺 ∈ Grp)
379ad2antrr 762 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑌𝑋)
38 simprl 809 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑣𝑌)
3937, 38sseldd 3637 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑣𝑋)
40 simprr 811 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑤𝑌)
4137, 40sseldd 3637 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑤𝑋)
42 simplr 807 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑢𝑋)
433, 13grpass 17478 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑣𝑋𝑤𝑋𝑢𝑋)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣 + (𝑤 + 𝑢)))
4436, 39, 41, 42, 43syl13anc 1368 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣 + (𝑤 + 𝑢)))
453, 13grpcl 17477 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝑢𝑋) → (𝑤 + 𝑢) ∈ 𝑋)
4636, 41, 42, 45syl3anc 1366 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑤 + 𝑢) ∈ 𝑋)
47 oveq12 6699 . . . . . . . . . . 11 ((𝑥 = 𝑣𝑦 = (𝑤 + 𝑢)) → (𝑥 + 𝑦) = (𝑣 + (𝑤 + 𝑢)))
48 ovex 6718 . . . . . . . . . . 11 (𝑣 + (𝑤 + 𝑢)) ∈ V
4947, 17, 48ovmpt2a 6833 . . . . . . . . . 10 ((𝑣𝑌 ∧ (𝑤 + 𝑢) ∈ 𝑋) → (𝑣𝐹(𝑤 + 𝑢)) = (𝑣 + (𝑤 + 𝑢)))
5038, 46, 49syl2anc 694 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣𝐹(𝑤 + 𝑢)) = (𝑣 + (𝑤 + 𝑢)))
5144, 50eqtr4d 2688 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣𝐹(𝑤 + 𝑢)))
5213subgcl 17651 . . . . . . . . . . 11 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑣𝑌𝑤𝑌) → (𝑣 + 𝑤) ∈ 𝑌)
53523expb 1285 . . . . . . . . . 10 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣 + 𝑤) ∈ 𝑌)
5453adantlr 751 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣 + 𝑤) ∈ 𝑌)
55 oveq12 6699 . . . . . . . . . 10 ((𝑥 = (𝑣 + 𝑤) ∧ 𝑦 = 𝑢) → (𝑥 + 𝑦) = ((𝑣 + 𝑤) + 𝑢))
56 ovex 6718 . . . . . . . . . 10 ((𝑣 + 𝑤) + 𝑢) ∈ V
5755, 17, 56ovmpt2a 6833 . . . . . . . . 9 (((𝑣 + 𝑤) ∈ 𝑌𝑢𝑋) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣 + 𝑤) + 𝑢))
5854, 42, 57syl2anc 694 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣 + 𝑤) + 𝑢))
59 oveq12 6699 . . . . . . . . . . 11 ((𝑥 = 𝑤𝑦 = 𝑢) → (𝑥 + 𝑦) = (𝑤 + 𝑢))
60 ovex 6718 . . . . . . . . . . 11 (𝑤 + 𝑢) ∈ V
6159, 17, 60ovmpt2a 6833 . . . . . . . . . 10 ((𝑤𝑌𝑢𝑋) → (𝑤𝐹𝑢) = (𝑤 + 𝑢))
6240, 42, 61syl2anc 694 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑤𝐹𝑢) = (𝑤 + 𝑢))
6362oveq2d 6706 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣𝐹(𝑤𝐹𝑢)) = (𝑣𝐹(𝑤 + 𝑢)))
6451, 58, 633eqtr4d 2695 . . . . . . 7 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
6564ralrimivva 3000 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
661, 13ressplusg 16040 . . . . . . . . . . . 12 (𝑌 ∈ (SubGrp‘𝐺) → + = (+g𝐻))
6766oveqd 6707 . . . . . . . . . . 11 (𝑌 ∈ (SubGrp‘𝐺) → (𝑣 + 𝑤) = (𝑣(+g𝐻)𝑤))
6867oveq1d 6705 . . . . . . . . . 10 (𝑌 ∈ (SubGrp‘𝐺) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣(+g𝐻)𝑤)𝐹𝑢))
6968eqeq1d 2653 . . . . . . . . 9 (𝑌 ∈ (SubGrp‘𝐺) → (((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7020, 69raleqbidv 3182 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → (∀𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7120, 70raleqbidv 3182 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → (∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7271biimpa 500 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ ∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))) → ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
7365, 72syldan 486 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
7435, 73jca 553 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7574ralrimiva 2995 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7623, 75jca 553 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝐹:((Base‘𝐻) × 𝑋)⟶𝑋 ∧ ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))))
77 eqid 2651 . . 3 (Base‘𝐻) = (Base‘𝐻)
78 eqid 2651 . . 3 (+g𝐻) = (+g𝐻)
79 eqid 2651 . . 3 (0g𝐻) = (0g𝐻)
8077, 78, 79isga 17770 . 2 (𝐹 ∈ (𝐻 GrpAct 𝑋) ↔ ((𝐻 ∈ Grp ∧ 𝑋 ∈ V) ∧ (𝐹:((Base‘𝐻) × 𝑋)⟶𝑋 ∧ ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))))
816, 76, 80sylanbrc 699 1 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹 ∈ (𝐻 GrpAct 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  wss 3607   × cxp 5141  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  Basecbs 15904  s cress 15905  +gcplusg 15988  0gc0g 16147  Grpcgrp 17469  SubGrpcsubg 17635   GrpAct cga 17768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-subg 17638  df-ga 17769
This theorem is referenced by:  gaid2  17782
  Copyright terms: Public domain W3C validator