MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgga Structured version   Visualization version   GIF version

Theorem subgga 18430
Description: A subgroup acts on its parent group. (Contributed by Jeff Hankins, 13-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
subgga.1 𝑋 = (Base‘𝐺)
subgga.2 + = (+g𝐺)
subgga.3 𝐻 = (𝐺s 𝑌)
subgga.4 𝐹 = (𝑥𝑌, 𝑦𝑋 ↦ (𝑥 + 𝑦))
Assertion
Ref Expression
subgga (𝑌 ∈ (SubGrp‘𝐺) → 𝐹 ∈ (𝐻 GrpAct 𝑋))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem subgga
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgga.3 . . . 4 𝐻 = (𝐺s 𝑌)
21subggrp 18282 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
3 subgga.1 . . . 4 𝑋 = (Base‘𝐺)
43fvexi 6684 . . 3 𝑋 ∈ V
52, 4jctir 523 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝐻 ∈ Grp ∧ 𝑋 ∈ V))
6 subgrcl 18284 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
76adantr 483 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝐺 ∈ Grp)
83subgss 18280 . . . . . . . . 9 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
98sselda 3967 . . . . . . . 8 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑌) → 𝑥𝑋)
109adantrr 715 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝑥𝑋)
11 simprr 771 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → 𝑦𝑋)
12 subgga.2 . . . . . . . 8 + = (+g𝐺)
133, 12grpcl 18111 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥 + 𝑦) ∈ 𝑋)
147, 10, 11, 13syl3anc 1367 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑌𝑦𝑋)) → (𝑥 + 𝑦) ∈ 𝑋)
1514ralrimivva 3191 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → ∀𝑥𝑌𝑦𝑋 (𝑥 + 𝑦) ∈ 𝑋)
16 subgga.4 . . . . . 6 𝐹 = (𝑥𝑌, 𝑦𝑋 ↦ (𝑥 + 𝑦))
1716fmpo 7766 . . . . 5 (∀𝑥𝑌𝑦𝑋 (𝑥 + 𝑦) ∈ 𝑋𝐹:(𝑌 × 𝑋)⟶𝑋)
1815, 17sylib 220 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹:(𝑌 × 𝑋)⟶𝑋)
191subgbas 18283 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 = (Base‘𝐻))
2019xpeq1d 5584 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → (𝑌 × 𝑋) = ((Base‘𝐻) × 𝑋))
2120feq2d 6500 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝐹:(𝑌 × 𝑋)⟶𝑋𝐹:((Base‘𝐻) × 𝑋)⟶𝑋))
2218, 21mpbid 234 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹:((Base‘𝐻) × 𝑋)⟶𝑋)
23 eqid 2821 . . . . . . . 8 (0g𝐺) = (0g𝐺)
2423subg0cl 18287 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑌)
25 oveq12 7165 . . . . . . . 8 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑢) → (𝑥 + 𝑦) = ((0g𝐺) + 𝑢))
26 ovex 7189 . . . . . . . 8 ((0g𝐺) + 𝑢) ∈ V
2725, 16, 26ovmpoa 7305 . . . . . . 7 (((0g𝐺) ∈ 𝑌𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐺) + 𝑢))
2824, 27sylan 582 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐺) + 𝑢))
291, 23subg0 18285 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
3029oveq1d 7171 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → ((0g𝐺)𝐹𝑢) = ((0g𝐻)𝐹𝑢))
3130adantr 483 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺)𝐹𝑢) = ((0g𝐻)𝐹𝑢))
323, 12, 23grplid 18133 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑢𝑋) → ((0g𝐺) + 𝑢) = 𝑢)
336, 32sylan 582 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐺) + 𝑢) = 𝑢)
3428, 31, 333eqtr3d 2864 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ((0g𝐻)𝐹𝑢) = 𝑢)
356ad2antrr 724 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝐺 ∈ Grp)
368ad2antrr 724 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑌𝑋)
37 simprl 769 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑣𝑌)
3836, 37sseldd 3968 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑣𝑋)
39 simprr 771 . . . . . . . . . . 11 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑤𝑌)
4036, 39sseldd 3968 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑤𝑋)
41 simplr 767 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → 𝑢𝑋)
423, 12grpass 18112 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑣𝑋𝑤𝑋𝑢𝑋)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣 + (𝑤 + 𝑢)))
4335, 38, 40, 41, 42syl13anc 1368 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣 + (𝑤 + 𝑢)))
443, 12grpcl 18111 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝑢𝑋) → (𝑤 + 𝑢) ∈ 𝑋)
4535, 40, 41, 44syl3anc 1367 . . . . . . . . . 10 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑤 + 𝑢) ∈ 𝑋)
46 oveq12 7165 . . . . . . . . . . 11 ((𝑥 = 𝑣𝑦 = (𝑤 + 𝑢)) → (𝑥 + 𝑦) = (𝑣 + (𝑤 + 𝑢)))
47 ovex 7189 . . . . . . . . . . 11 (𝑣 + (𝑤 + 𝑢)) ∈ V
4846, 16, 47ovmpoa 7305 . . . . . . . . . 10 ((𝑣𝑌 ∧ (𝑤 + 𝑢) ∈ 𝑋) → (𝑣𝐹(𝑤 + 𝑢)) = (𝑣 + (𝑤 + 𝑢)))
4937, 45, 48syl2anc 586 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣𝐹(𝑤 + 𝑢)) = (𝑣 + (𝑤 + 𝑢)))
5043, 49eqtr4d 2859 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤) + 𝑢) = (𝑣𝐹(𝑤 + 𝑢)))
5112subgcl 18289 . . . . . . . . . . 11 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑣𝑌𝑤𝑌) → (𝑣 + 𝑤) ∈ 𝑌)
52513expb 1116 . . . . . . . . . 10 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣 + 𝑤) ∈ 𝑌)
5352adantlr 713 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣 + 𝑤) ∈ 𝑌)
54 oveq12 7165 . . . . . . . . . 10 ((𝑥 = (𝑣 + 𝑤) ∧ 𝑦 = 𝑢) → (𝑥 + 𝑦) = ((𝑣 + 𝑤) + 𝑢))
55 ovex 7189 . . . . . . . . . 10 ((𝑣 + 𝑤) + 𝑢) ∈ V
5654, 16, 55ovmpoa 7305 . . . . . . . . 9 (((𝑣 + 𝑤) ∈ 𝑌𝑢𝑋) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣 + 𝑤) + 𝑢))
5753, 41, 56syl2anc 586 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣 + 𝑤) + 𝑢))
58 oveq12 7165 . . . . . . . . . . 11 ((𝑥 = 𝑤𝑦 = 𝑢) → (𝑥 + 𝑦) = (𝑤 + 𝑢))
59 ovex 7189 . . . . . . . . . . 11 (𝑤 + 𝑢) ∈ V
6058, 16, 59ovmpoa 7305 . . . . . . . . . 10 ((𝑤𝑌𝑢𝑋) → (𝑤𝐹𝑢) = (𝑤 + 𝑢))
6139, 41, 60syl2anc 586 . . . . . . . . 9 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑤𝐹𝑢) = (𝑤 + 𝑢))
6261oveq2d 7172 . . . . . . . 8 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → (𝑣𝐹(𝑤𝐹𝑢)) = (𝑣𝐹(𝑤 + 𝑢)))
6350, 57, 623eqtr4d 2866 . . . . . . 7 (((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) ∧ (𝑣𝑌𝑤𝑌)) → ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
6463ralrimivva 3191 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
651, 12ressplusg 16612 . . . . . . . . . . . 12 (𝑌 ∈ (SubGrp‘𝐺) → + = (+g𝐻))
6665oveqd 7173 . . . . . . . . . . 11 (𝑌 ∈ (SubGrp‘𝐺) → (𝑣 + 𝑤) = (𝑣(+g𝐻)𝑤))
6766oveq1d 7171 . . . . . . . . . 10 (𝑌 ∈ (SubGrp‘𝐺) → ((𝑣 + 𝑤)𝐹𝑢) = ((𝑣(+g𝐻)𝑤)𝐹𝑢))
6867eqeq1d 2823 . . . . . . . . 9 (𝑌 ∈ (SubGrp‘𝐺) → (((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
6919, 68raleqbidv 3401 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → (∀𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7019, 69raleqbidv 3401 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → (∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)) ↔ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7170biimpa 479 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ ∀𝑣𝑌𝑤𝑌 ((𝑣 + 𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))) → ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
7264, 71syldan 593 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))
7334, 72jca 514 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑋) → (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7473ralrimiva 3182 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))
7522, 74jca 514 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝐹:((Base‘𝐻) × 𝑋)⟶𝑋 ∧ ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢)))))
76 eqid 2821 . . 3 (Base‘𝐻) = (Base‘𝐻)
77 eqid 2821 . . 3 (+g𝐻) = (+g𝐻)
78 eqid 2821 . . 3 (0g𝐻) = (0g𝐻)
7976, 77, 78isga 18421 . 2 (𝐹 ∈ (𝐻 GrpAct 𝑋) ↔ ((𝐻 ∈ Grp ∧ 𝑋 ∈ V) ∧ (𝐹:((Base‘𝐻) × 𝑋)⟶𝑋 ∧ ∀𝑢𝑋 (((0g𝐻)𝐹𝑢) = 𝑢 ∧ ∀𝑣 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑣(+g𝐻)𝑤)𝐹𝑢) = (𝑣𝐹(𝑤𝐹𝑢))))))
805, 75, 79sylanbrc 585 1 (𝑌 ∈ (SubGrp‘𝐺) → 𝐹 ∈ (𝐻 GrpAct 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  wss 3936   × cxp 5553  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  Basecbs 16483  s cress 16484  +gcplusg 16565  0gc0g 16713  Grpcgrp 18103  SubGrpcsubg 18273   GrpAct cga 18419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-subg 18276  df-ga 18420
This theorem is referenced by:  gaid2  18433
  Copyright terms: Public domain W3C validator