MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat Structured version   Visualization version   GIF version

Theorem swrdccat 13292
Description: The subword of a concatenation of two words as concatenation of subwords of the two concatenated words. (Contributed by Alexander van der Vekens, 29-May-2018.)
Hypothesis
Ref Expression
swrdccatin12.l 𝐿 = (#‘𝐴)
Assertion
Ref Expression
swrdccat ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩))))

Proof of Theorem swrdccat
StepHypRef Expression
1 swrdccatin12.l . . . . 5 𝐿 = (#‘𝐴)
21swrdccat3 13291 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))))))
32imp 443 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
4 lencl 13127 . . . . . 6 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℕ0)
54adantr 479 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (#‘𝐴) ∈ ℕ0)
61eqcomi 2618 . . . . . . 7 (#‘𝐴) = 𝐿
76eleq1i 2678 . . . . . 6 ((#‘𝐴) ∈ ℕ0𝐿 ∈ ℕ0)
8 elfz2nn0 12257 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
9 iftrue 4041 . . . . . . . . . . . . . . . . . 18 (𝑁𝐿 → if(𝑁𝐿, 𝑁, 𝐿) = 𝑁)
109adantl 480 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → if(𝑁𝐿, 𝑁, 𝐿) = 𝑁)
1110opeq2d 4341 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩ = ⟨𝑀, 𝑁⟩)
1211oveq2d 6542 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → (𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))
13 iftrue 4041 . . . . . . . . . . . . . . . . . . . 20 (0 ≤ (𝑀𝐿) → if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0) = (𝑀𝐿))
1413opeq1d 4340 . . . . . . . . . . . . . . . . . . 19 (0 ≤ (𝑀𝐿) → ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩ = ⟨(𝑀𝐿), (𝑁𝐿)⟩)
1514oveq2d 6542 . . . . . . . . . . . . . . . . . 18 (0 ≤ (𝑀𝐿) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
1615adantr 479 . . . . . . . . . . . . . . . . 17 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
17 simpr 475 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐵 ∈ Word 𝑉)
18 nn0z 11235 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
19 nn0z 11235 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
2019adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
21 zsubcl 11254 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑀𝐿) ∈ ℤ)
2220, 21sylan 486 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℤ) → (𝑀𝐿) ∈ ℤ)
23 nn0z 11235 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2423adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
25 zsubcl 11254 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
2624, 25sylan 486 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
2722, 26jca 552 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℤ) → ((𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
2818, 27sylan2 489 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → ((𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
2917, 28anim12i 587 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝐵 ∈ Word 𝑉 ∧ ((𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ)))
30 3anass 1034 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ) ↔ (𝐵 ∈ Word 𝑉 ∧ ((𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ)))
3129, 30sylibr 222 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
3231ad2antrl 759 . . . . . . . . . . . . . . . . . 18 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
33 nn0re 11150 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
34 nn0re 11150 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3533, 34anim12i 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
36 nn0re 11150 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
37 subge0 10392 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0 ≤ (𝑀𝐿) ↔ 𝐿𝑀))
3837adantlr 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (0 ≤ (𝑀𝐿) ↔ 𝐿𝑀))
39 simpr 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ∈ ℝ)
4039adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → 𝑁 ∈ ℝ)
41 simpr 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → 𝐿 ∈ ℝ)
42 simpl 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ∈ ℝ)
4342adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → 𝑀 ∈ ℝ)
4440, 41, 433jca 1234 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ))
45 letr 9982 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((𝑁𝐿𝐿𝑀) → 𝑁𝑀))
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → ((𝑁𝐿𝐿𝑀) → 𝑁𝑀))
4746expcomd 452 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (𝐿𝑀 → (𝑁𝐿𝑁𝑀)))
4838, 47sylbid 228 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (0 ≤ (𝑀𝐿) → (𝑁𝐿𝑁𝑀)))
4948com23 83 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (𝑁𝐿 → (0 ≤ (𝑀𝐿) → 𝑁𝑀)))
5035, 36, 49syl2an 492 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝑁𝐿 → (0 ≤ (𝑀𝐿) → 𝑁𝑀)))
5150adantl 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝑁𝐿 → (0 ≤ (𝑀𝐿) → 𝑁𝑀)))
5251imp 443 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → (0 ≤ (𝑀𝐿) → 𝑁𝑀))
5352impcom 444 . . . . . . . . . . . . . . . . . . 19 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → 𝑁𝑀)
5434adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
5554adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝑁 ∈ ℝ)
5633adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
5756adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝑀 ∈ ℝ)
5836adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℝ)
5955, 57, 583jca 1234 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ))
6059adantl 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ))
6160ad2antrl 759 . . . . . . . . . . . . . . . . . . . 20 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ))
62 lesub1 10373 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑁𝑀 ↔ (𝑁𝐿) ≤ (𝑀𝐿)))
6361, 62syl 17 . . . . . . . . . . . . . . . . . . 19 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝑁𝑀 ↔ (𝑁𝐿) ≤ (𝑀𝐿)))
6453, 63mpbid 220 . . . . . . . . . . . . . . . . . 18 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝑁𝐿) ≤ (𝑀𝐿))
65 swrdlend 13231 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ) → ((𝑁𝐿) ≤ (𝑀𝐿) → (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) = ∅))
6632, 64, 65sylc 62 . . . . . . . . . . . . . . . . 17 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) = ∅)
6716, 66eqtrd 2643 . . . . . . . . . . . . . . . 16 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = ∅)
68 iffalse 4044 . . . . . . . . . . . . . . . . . . 19 (¬ 0 ≤ (𝑀𝐿) → if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0) = 0)
6968opeq1d 4340 . . . . . . . . . . . . . . . . . 18 (¬ 0 ≤ (𝑀𝐿) → ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩ = ⟨0, (𝑁𝐿)⟩)
7069oveq2d 6542 . . . . . . . . . . . . . . . . 17 (¬ 0 ≤ (𝑀𝐿) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = (𝐵 substr ⟨0, (𝑁𝐿)⟩))
7117adantr 479 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → 𝐵 ∈ Word 𝑉)
7271adantr 479 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → 𝐵 ∈ Word 𝑉)
73 0zd 11224 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → 0 ∈ ℤ)
7424, 18, 25syl2an 492 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝑁𝐿) ∈ ℤ)
7574adantl 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝑁𝐿) ∈ ℤ)
7675adantr 479 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → (𝑁𝐿) ∈ ℤ)
7772, 73, 763jca 1234 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → (𝐵 ∈ Word 𝑉 ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
7854, 36anim12i 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
7978adantl 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
80 suble0 10393 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑁𝐿) ≤ 0 ↔ 𝑁𝐿))
8179, 80syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝑁𝐿) ≤ 0 ↔ 𝑁𝐿))
8281biimpar 500 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → (𝑁𝐿) ≤ 0)
83 swrdlend 13231 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ Word 𝑉 ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ) → ((𝑁𝐿) ≤ 0 → (𝐵 substr ⟨0, (𝑁𝐿)⟩) = ∅))
8477, 82, 83sylc 62 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → (𝐵 substr ⟨0, (𝑁𝐿)⟩) = ∅)
8570, 84sylan9eq 2663 . . . . . . . . . . . . . . . 16 ((¬ 0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = ∅)
8667, 85pm2.61ian 826 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = ∅)
8712, 86oveq12d 6544 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = ((𝐴 substr ⟨𝑀, 𝑁⟩) ++ ∅))
88 swrdcl 13219 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
89 ccatrid 13171 . . . . . . . . . . . . . . . . . 18 ((𝐴 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉 → ((𝐴 substr ⟨𝑀, 𝑁⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝑁⟩))
9088, 89syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Word 𝑉 → ((𝐴 substr ⟨𝑀, 𝑁⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝑁⟩))
9190adantr 479 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐴 substr ⟨𝑀, 𝑁⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝑁⟩))
9291adantr 479 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝐴 substr ⟨𝑀, 𝑁⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝑁⟩))
9392adantr 479 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → ((𝐴 substr ⟨𝑀, 𝑁⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝑁⟩))
9487, 93eqtrd 2643 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = (𝐴 substr ⟨𝑀, 𝑁⟩))
95 iffalse 4044 . . . . . . . . . . . . . . . . . . 19 𝑁𝐿 → if(𝑁𝐿, 𝑁, 𝐿) = 𝐿)
96953ad2ant2 1075 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → if(𝑁𝐿, 𝑁, 𝐿) = 𝐿)
9796opeq2d 4341 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩ = ⟨𝑀, 𝐿⟩)
9897oveq2d 6542 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → (𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) = (𝐴 substr ⟨𝑀, 𝐿⟩))
99 simpl 471 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐴 ∈ Word 𝑉)
10099, 20, 183anim123i 1239 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝐴 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ))
1011003expb 1257 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝐴 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ))
102 swrdlend 13231 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝑀 → (𝐴 substr ⟨𝑀, 𝐿⟩) = ∅))
103101, 102syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝐿𝑀 → (𝐴 substr ⟨𝑀, 𝐿⟩) = ∅))
104103imp 443 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝐿𝑀) → (𝐴 substr ⟨𝑀, 𝐿⟩) = ∅)
1051043adant2 1072 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → (𝐴 substr ⟨𝑀, 𝐿⟩) = ∅)
10698, 105eqtrd 2643 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → (𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) = ∅)
10756, 36, 37syl2an 492 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (0 ≤ (𝑀𝐿) ↔ 𝐿𝑀))
108107biimprd 236 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝐿𝑀 → 0 ≤ (𝑀𝐿)))
109108adantl 480 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝐿𝑀 → 0 ≤ (𝑀𝐿)))
110109imp 443 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝐿𝑀) → 0 ≤ (𝑀𝐿))
1111103adant2 1072 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → 0 ≤ (𝑀𝐿))
112111, 14syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩ = ⟨(𝑀𝐿), (𝑁𝐿)⟩)
113112oveq2d 6542 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
114106, 113oveq12d 6544 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = (∅ ++ (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
115 swrdcl 13219 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ Word 𝑉 → (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) ∈ Word 𝑉)
116115adantl 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) ∈ Word 𝑉)
117 ccatlid 13170 . . . . . . . . . . . . . . . . 17 ((𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) ∈ Word 𝑉 → (∅ ++ (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
118116, 117syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (∅ ++ (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
119118adantr 479 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (∅ ++ (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
1201193ad2ant1 1074 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → (∅ ++ (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
121114, 120eqtrd 2643 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
122953ad2ant2 1075 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → if(𝑁𝐿, 𝑁, 𝐿) = 𝐿)
123122opeq2d 4341 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩ = ⟨𝑀, 𝐿⟩)
124123oveq2d 6542 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → (𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) = (𝐴 substr ⟨𝑀, 𝐿⟩))
12533, 36, 37syl2an 492 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (0 ≤ (𝑀𝐿) ↔ 𝐿𝑀))
126125adantlr 746 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (0 ≤ (𝑀𝐿) ↔ 𝐿𝑀))
127126adantl 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (0 ≤ (𝑀𝐿) ↔ 𝐿𝑀))
128127biimpd 217 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (0 ≤ (𝑀𝐿) → 𝐿𝑀))
129128con3dimp 455 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝐿𝑀) → ¬ 0 ≤ (𝑀𝐿))
1301293adant2 1072 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → ¬ 0 ≤ (𝑀𝐿))
131130, 68syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0) = 0)
132131opeq1d 4340 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩ = ⟨0, (𝑁𝐿)⟩)
133132oveq2d 6542 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = (𝐵 substr ⟨0, (𝑁𝐿)⟩))
134124, 133oveq12d 6544 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))
13594, 121, 1342if2 4085 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
136135exp32 628 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 ∈ ℕ0 → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))))
137136com12 32 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 ∈ ℕ0 → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))))
1381373adant3 1073 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 ∈ ℕ0 → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))))
1398, 138sylbi 205 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 ∈ ℕ0 → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))))
140139adantr 479 . . . . . . 7 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 ∈ ℕ0 → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))))
141140com13 85 . . . . . 6 (𝐿 ∈ ℕ0 → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))))
1427, 141sylbi 205 . . . . 5 ((#‘𝐴) ∈ ℕ0 → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))))
1435, 142mpcom 37 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))))))
144143imp 443 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
1453, 144eqtr4d 2646 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)))
146145ex 448 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  c0 3873  ifcif 4035  cop 4130   class class class wbr 4577  cfv 5789  (class class class)co 6526  cr 9791  0cc0 9792   + caddc 9795  cle 9931  cmin 10117  0cn0 11141  cz 11212  ...cfz 12154  #chash 12936  Word cword 13094   ++ cconcat 13096   substr csubstr 13098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-n0 11142  df-z 11213  df-uz 11522  df-fz 12155  df-fzo 12292  df-hash 12937  df-word 13102  df-concat 13104  df-substr 13106
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator