Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdcl Structured version   Visualization version   GIF version

Theorem swrdcl 13365
 Description: Closure of the subword extractor. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
swrdcl (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)

Proof of Theorem swrdcl
Dummy variables 𝑠 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2686 . 2 ((𝑆 substr ⟨𝐹, 𝐿⟩) = ∅ → ((𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴 ↔ ∅ ∈ Word 𝐴))
2 n0 3912 . . . 4 ((𝑆 substr ⟨𝐹, 𝐿⟩) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑆 substr ⟨𝐹, 𝐿⟩))
3 df-substr 13250 . . . . . . 7 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
43elmpt2cl2 6838 . . . . . 6 (𝑥 ∈ (𝑆 substr ⟨𝐹, 𝐿⟩) → ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ))
5 opelxp 5111 . . . . . 6 (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
64, 5sylib 208 . . . . 5 (𝑥 ∈ (𝑆 substr ⟨𝐹, 𝐿⟩) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
76exlimiv 1855 . . . 4 (∃𝑥 𝑥 ∈ (𝑆 substr ⟨𝐹, 𝐿⟩) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
82, 7sylbi 207 . . 3 ((𝑆 substr ⟨𝐹, 𝐿⟩) ≠ ∅ → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
9 swrdval 13363 . . . . 5 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
10 wrdf 13257 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐴𝑆:(0..^(#‘𝑆))⟶𝐴)
11103ad2ant1 1080 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝑆:(0..^(#‘𝑆))⟶𝐴)
1211ad2antrr 761 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝑆:(0..^(#‘𝑆))⟶𝐴)
13 simplr 791 . . . . . . . . . . 11 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝐹..^𝐿) ⊆ dom 𝑆)
14 simpr 477 . . . . . . . . . . . 12 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝑥 ∈ (0..^(𝐿𝐹)))
15 simpll3 1100 . . . . . . . . . . . 12 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝐿 ∈ ℤ)
16 simpll2 1099 . . . . . . . . . . . 12 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝐹 ∈ ℤ)
17 fzoaddel2 12472 . . . . . . . . . . . 12 ((𝑥 ∈ (0..^(𝐿𝐹)) ∧ 𝐿 ∈ ℤ ∧ 𝐹 ∈ ℤ) → (𝑥 + 𝐹) ∈ (𝐹..^𝐿))
1814, 15, 16, 17syl3anc 1323 . . . . . . . . . . 11 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑥 + 𝐹) ∈ (𝐹..^𝐿))
1913, 18sseldd 3588 . . . . . . . . . 10 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑥 + 𝐹) ∈ dom 𝑆)
20 fdm 6013 . . . . . . . . . . 11 (𝑆:(0..^(#‘𝑆))⟶𝐴 → dom 𝑆 = (0..^(#‘𝑆)))
2112, 20syl 17 . . . . . . . . . 10 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → dom 𝑆 = (0..^(#‘𝑆)))
2219, 21eleqtrd 2700 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑥 + 𝐹) ∈ (0..^(#‘𝑆)))
2312, 22ffvelrnd 6321 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑆‘(𝑥 + 𝐹)) ∈ 𝐴)
24 eqid 2621 . . . . . . . 8 (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))
2523, 24fmptd 6346 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))):(0..^(𝐿𝐹))⟶𝐴)
26 iswrdi 13256 . . . . . . 7 ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))):(0..^(𝐿𝐹))⟶𝐴 → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) ∈ Word 𝐴)
2725, 26syl 17 . . . . . 6 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) ∈ Word 𝐴)
28 wrd0 13277 . . . . . . 7 ∅ ∈ Word 𝐴
2928a1i 11 . . . . . 6 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ ¬ (𝐹..^𝐿) ⊆ dom 𝑆) → ∅ ∈ Word 𝐴)
3027, 29ifclda 4097 . . . . 5 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅) ∈ Word 𝐴)
319, 30eqeltrd 2698 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
32313expb 1263 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
338, 32sylan2 491 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝐹, 𝐿⟩) ≠ ∅) → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
3428a1i 11 . 2 (𝑆 ∈ Word 𝐴 → ∅ ∈ Word 𝐴)
351, 33, 34pm2.61ne 2875 1 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480  ∃wex 1701   ∈ wcel 1987   ≠ wne 2790  Vcvv 3189   ⊆ wss 3559  ∅c0 3896  ifcif 4063  ⟨cop 4159   ↦ cmpt 4678   × cxp 5077  dom cdm 5079  ⟶wf 5848  ‘cfv 5852  (class class class)co 6610  1st c1st 7118  2nd c2nd 7119  0cc0 9888   + caddc 9891   − cmin 10218  ℤcz 11329  ..^cfzo 12414  #chash 13065  Word cword 13238   substr csubstr 13242 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-fzo 12415  df-hash 13066  df-word 13246  df-substr 13250 This theorem is referenced by:  swrdf  13371  addlenswrd  13384  swrd0fvlsw  13389  swrdeq  13390  swrdspsleq  13395  swrds1  13397  ccatswrd  13402  swrdccat2  13404  swrdswrd  13406  lenrevcctswrd  13413  wrdind  13422  wrd2ind  13423  swrdccatin12  13436  swrdccat  13438  swrdccat3a  13439  swrdccat3blem  13440  splcl  13448  spllen  13450  splfv1  13451  splfv2a  13452  splval2  13453  cshwcl  13489  cshwlen  13490  cshwidxmod  13494  gsumspl  17313  psgnunilem5  17846  psgnunilem2  17847  efgsres  18083  efgredleme  18088  efgredlemc  18090  efgcpbllemb  18100  frgpuplem  18117  wwlksm1edg  26653  wwlksnred  26673  wwlksnextwrd  26678  clwlkclwwlk  26787  clwwlksf  26798  wwlksubclwwlks  26808  clwlksfclwwlk  26845  extwwlkfablem2  27085  wrdsplex  30422  signsvtn0  30451  signstfveq0  30458  pfxcl  40711  ccatpfx  40734  pfxswrd  40738  lenrevpfxcctswrd  40744  pfxccatin12  40750
 Copyright terms: Public domain W3C validator