![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > threehalves | Structured version Visualization version GIF version |
Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
Ref | Expression |
---|---|
threehalves | ⊢ (3 / 2) = (1.5) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 11286 | . . . . 5 ⊢ 3 ∈ ℝ | |
2 | 2re 11282 | . . . . 5 ⊢ 2 ∈ ℝ | |
3 | 2ne0 11305 | . . . . 5 ⊢ 2 ≠ 0 | |
4 | 1, 2, 3 | redivcli 10984 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
5 | 4 | recni 10244 | . . 3 ⊢ (3 / 2) ∈ ℂ |
6 | 1nn0 11500 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
7 | 5re 11291 | . . . . 5 ⊢ 5 ∈ ℝ | |
8 | dpcl 29907 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 5 ∈ ℝ) → (1.5) ∈ ℝ) | |
9 | 6, 7, 8 | mp2an 710 | . . . 4 ⊢ (1.5) ∈ ℝ |
10 | 9 | recni 10244 | . . 3 ⊢ (1.5) ∈ ℂ |
11 | 2cnne0 11434 | . . 3 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
12 | 5, 10, 11 | 3pm3.2i 1424 | . 2 ⊢ ((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) |
13 | 5nn0 11504 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
14 | 3nn0 11502 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
15 | 0nn0 11499 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
16 | eqid 2760 | . . . . . 6 ⊢ ;15 = ;15 | |
17 | df-2 11271 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
18 | 17 | oveq1i 6823 | . . . . . . 7 ⊢ (2 + 1) = ((1 + 1) + 1) |
19 | 2p1e3 11343 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
20 | 18, 19 | eqtr3i 2784 | . . . . . 6 ⊢ ((1 + 1) + 1) = 3 |
21 | 5p5e10 11788 | . . . . . 6 ⊢ (5 + 5) = ;10 | |
22 | 6, 13, 6, 13, 16, 16, 20, 15, 21 | decaddc 11764 | . . . . 5 ⊢ (;15 + ;15) = ;30 |
23 | 6, 13, 6, 13, 14, 15, 22 | dpadd 29928 | . . . 4 ⊢ ((1.5) + (1.5)) = (3.0) |
24 | 14 | dp0u 29918 | . . . 4 ⊢ (3.0) = 3 |
25 | 23, 24 | eqtri 2782 | . . 3 ⊢ ((1.5) + (1.5)) = 3 |
26 | 10 | times2i 11340 | . . 3 ⊢ ((1.5) · 2) = ((1.5) + (1.5)) |
27 | 1 | recni 10244 | . . . 4 ⊢ 3 ∈ ℂ |
28 | 11 | simpli 476 | . . . 4 ⊢ 2 ∈ ℂ |
29 | 27, 28, 3 | divcan1i 10961 | . . 3 ⊢ ((3 / 2) · 2) = 3 |
30 | 25, 26, 29 | 3eqtr4ri 2793 | . 2 ⊢ ((3 / 2) · 2) = ((1.5) · 2) |
31 | mulcan2 10857 | . . 3 ⊢ (((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((3 / 2) · 2) = ((1.5) · 2) ↔ (3 / 2) = (1.5))) | |
32 | 31 | biimpa 502 | . 2 ⊢ ((((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) ∧ ((3 / 2) · 2) = ((1.5) · 2)) → (3 / 2) = (1.5)) |
33 | 12, 30, 32 | mp2an 710 | 1 ⊢ (3 / 2) = (1.5) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 (class class class)co 6813 ℂcc 10126 ℝcr 10127 0cc0 10128 1c1 10129 + caddc 10131 · cmul 10133 / cdiv 10876 2c2 11262 3c3 11263 5c5 11265 ℕ0cn0 11484 ;cdc 11685 .cdp 29904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-dec 11686 df-dp2 29887 df-dp 29905 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |