HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unopf1o Structured version   Visualization version   GIF version

Theorem unopf1o 28642
Description: A unitary operator in Hilbert space is one-to-one and onto. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unopf1o (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)

Proof of Theorem unopf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunop 28598 . . . . 5 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
21simplbi 476 . . . 4 (𝑇 ∈ UniOp → 𝑇: ℋ–onto→ ℋ)
3 fof 6077 . . . 4 (𝑇: ℋ–onto→ ℋ → 𝑇: ℋ⟶ ℋ)
42, 3syl 17 . . 3 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
5 unop 28641 . . . . . . . . . . . . 13 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑥)) = (𝑥 ·ih 𝑥))
653anidm23 1382 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑥)) = (𝑥 ·ih 𝑥))
763adant3 1079 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑥)) = (𝑥 ·ih 𝑥))
8 unop 28641 . . . . . . . . . . . . 13 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦))
983anidm23 1382 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦))
1093adant2 1078 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦))
117, 10oveq12d 6628 . . . . . . . . . 10 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) = ((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)))
12 unop 28641 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
13 unop 28641 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑥)) = (𝑦 ·ih 𝑥))
14133com23 1268 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑥)) = (𝑦 ·ih 𝑥))
1512, 14oveq12d 6628 . . . . . . . . . 10 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥))) = ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥)))
1611, 15oveq12d 6628 . . . . . . . . 9 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
17163expb 1263 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
18 ffvelrn 6318 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
19 ffvelrn 6318 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
2018, 19anim12dan 881 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
214, 20sylan 488 . . . . . . . . 9 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
22 normlem9at 27845 . . . . . . . . 9 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))))
2321, 22syl 17 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))))
24 normlem9at 27845 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 𝑦) ·ih (𝑥 𝑦)) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
2524adantl 482 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 𝑦) ·ih (𝑥 𝑦)) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
2617, 23, 253eqtr4rd 2666 . . . . . . 7 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 𝑦) ·ih (𝑥 𝑦)) = (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))))
2726eqeq1d 2623 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0))
28 hvsubcl 27741 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) ∈ ℋ)
29 his6 27823 . . . . . . . . 9 ((𝑥 𝑦) ∈ ℋ → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ (𝑥 𝑦) = 0))
3028, 29syl 17 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ (𝑥 𝑦) = 0))
31 hvsubeq0 27792 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 𝑦) = 0𝑥 = 𝑦))
3230, 31bitrd 268 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ 𝑥 = 𝑦))
3332adantl 482 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ 𝑥 = 𝑦))
34 hvsubcl 27741 . . . . . . . . 9 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((𝑇𝑥) − (𝑇𝑦)) ∈ ℋ)
35 his6 27823 . . . . . . . . 9 (((𝑇𝑥) − (𝑇𝑦)) ∈ ℋ → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ ((𝑇𝑥) − (𝑇𝑦)) = 0))
3634, 35syl 17 . . . . . . . 8 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ ((𝑇𝑥) − (𝑇𝑦)) = 0))
37 hvsubeq0 27792 . . . . . . . 8 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (((𝑇𝑥) − (𝑇𝑦)) = 0 ↔ (𝑇𝑥) = (𝑇𝑦)))
3836, 37bitrd 268 . . . . . . 7 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ (𝑇𝑥) = (𝑇𝑦)))
3921, 38syl 17 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ (𝑇𝑥) = (𝑇𝑦)))
4027, 33, 393bitr3rd 299 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) = (𝑇𝑦) ↔ 𝑥 = 𝑦))
4140biimpd 219 . . . 4 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
4241ralrimivva 2966 . . 3 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
43 dff13 6472 . . 3 (𝑇: ℋ–1-1→ ℋ ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦)))
444, 42, 43sylanbrc 697 . 2 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1→ ℋ)
45 df-f1o 5859 . 2 (𝑇: ℋ–1-1-onto→ ℋ ↔ (𝑇: ℋ–1-1→ ℋ ∧ 𝑇: ℋ–onto→ ℋ))
4644, 2, 45sylanbrc 697 1 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wf 5848  1-1wf1 5849  ontowfo 5850  1-1-ontowf1o 5851  cfv 5852  (class class class)co 6610  0cc0 9887   + caddc 9890  cmin 10217  chil 27643   ·ih csp 27646  0c0v 27648   cmv 27649  UniOpcuo 27673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-hilex 27723  ax-hfvadd 27724  ax-hvcom 27725  ax-hvass 27726  ax-hv0cl 27727  ax-hvaddid 27728  ax-hfvmul 27729  ax-hvmulid 27730  ax-hvdistr2 27733  ax-hvmul0 27734  ax-hfi 27803  ax-his1 27806  ax-his2 27807  ax-his3 27808  ax-his4 27809
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-2 11030  df-cj 13780  df-re 13781  df-im 13782  df-hvsub 27695  df-unop 28569
This theorem is referenced by:  unopnorm  28643  cnvunop  28644  unopadj  28645  unoplin  28646  counop  28647  unopbd  28741
  Copyright terms: Public domain W3C validator