MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkres Structured version   Visualization version   GIF version

Theorem wlkres 27452
Description: The restriction 𝐻, 𝑄 of a walk 𝐹, 𝑃 to an initial segment of the walk (of length 𝑁) forms a walk on the subgraph 𝑆 consisting of the edges in the initial segment. Formerly proven directly for Eulerian paths, see eupthres 27994. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 5-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
wlkres.v 𝑉 = (Vtx‘𝐺)
wlkres.i 𝐼 = (iEdg‘𝐺)
wlkres.d (𝜑𝐹(Walks‘𝐺)𝑃)
wlkres.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
wlkres.s (𝜑 → (Vtx‘𝑆) = 𝑉)
wlkres.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
wlkres.h 𝐻 = (𝐹 prefix 𝑁)
wlkres.q 𝑄 = (𝑃 ↾ (0...𝑁))
Assertion
Ref Expression
wlkres (𝜑𝐻(Walks‘𝑆)𝑄)

Proof of Theorem wlkres
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkres.d . . . 4 (𝜑𝐹(Walks‘𝐺)𝑃)
2 wlkres.i . . . . 5 𝐼 = (iEdg‘𝐺)
32wlkf 27396 . . . 4 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
4 pfxwrdsymb 14051 . . . 4 (𝐹 ∈ Word dom 𝐼 → (𝐹 prefix 𝑁) ∈ Word (𝐹 “ (0..^𝑁)))
51, 3, 43syl 18 . . 3 (𝜑 → (𝐹 prefix 𝑁) ∈ Word (𝐹 “ (0..^𝑁)))
6 wlkres.h . . . 4 𝐻 = (𝐹 prefix 𝑁)
76a1i 11 . . 3 (𝜑𝐻 = (𝐹 prefix 𝑁))
8 wlkres.e . . . . . 6 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
98dmeqd 5774 . . . . 5 (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
101, 3syl 17 . . . . . . 7 (𝜑𝐹 ∈ Word dom 𝐼)
11 wrdf 13867 . . . . . . 7 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
12 fimass 6555 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼)
1310, 11, 123syl 18 . . . . . 6 (𝜑 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼)
14 ssdmres 5876 . . . . . 6 ((𝐹 “ (0..^𝑁)) ⊆ dom 𝐼 ↔ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁)))
1513, 14sylib 220 . . . . 5 (𝜑 → dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁)))
169, 15eqtrd 2856 . . . 4 (𝜑 → dom (iEdg‘𝑆) = (𝐹 “ (0..^𝑁)))
17 wrdeq 13886 . . . 4 (dom (iEdg‘𝑆) = (𝐹 “ (0..^𝑁)) → Word dom (iEdg‘𝑆) = Word (𝐹 “ (0..^𝑁)))
1816, 17syl 17 . . 3 (𝜑 → Word dom (iEdg‘𝑆) = Word (𝐹 “ (0..^𝑁)))
195, 7, 183eltr4d 2928 . 2 (𝜑𝐻 ∈ Word dom (iEdg‘𝑆))
20 wlkres.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
2120wlkp 27398 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
221, 21syl 17 . . . . . 6 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
23 wlkres.s . . . . . . 7 (𝜑 → (Vtx‘𝑆) = 𝑉)
2423feq3d 6501 . . . . . 6 (𝜑 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉))
2522, 24mpbird 259 . . . . 5 (𝜑𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆))
26 fzossfz 13057 . . . . . . 7 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
27 wlkres.n . . . . . . 7 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
2826, 27sseldi 3965 . . . . . 6 (𝜑𝑁 ∈ (0...(♯‘𝐹)))
29 elfzuz3 12906 . . . . . 6 (𝑁 ∈ (0...(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
30 fzss2 12948 . . . . . 6 ((♯‘𝐹) ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...(♯‘𝐹)))
3128, 29, 303syl 18 . . . . 5 (𝜑 → (0...𝑁) ⊆ (0...(♯‘𝐹)))
3225, 31fssresd 6545 . . . 4 (𝜑 → (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆))
336fveq2i 6673 . . . . . . 7 (♯‘𝐻) = (♯‘(𝐹 prefix 𝑁))
34 pfxlen 14045 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
3510, 28, 34syl2anc 586 . . . . . . 7 (𝜑 → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
3633, 35syl5eq 2868 . . . . . 6 (𝜑 → (♯‘𝐻) = 𝑁)
3736oveq2d 7172 . . . . 5 (𝜑 → (0...(♯‘𝐻)) = (0...𝑁))
3837feq2d 6500 . . . 4 (𝜑 → ((𝑃 ↾ (0...𝑁)):(0...(♯‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆)))
3932, 38mpbird 259 . . 3 (𝜑 → (𝑃 ↾ (0...𝑁)):(0...(♯‘𝐻))⟶(Vtx‘𝑆))
40 wlkres.q . . . 4 𝑄 = (𝑃 ↾ (0...𝑁))
4140feq1i 6505 . . 3 (𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...(♯‘𝐻))⟶(Vtx‘𝑆))
4239, 41sylibr 236 . 2 (𝜑𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆))
4320, 2wlkprop 27393 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
441, 43syl 17 . . . . 5 (𝜑 → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
4544adantr 483 . . . 4 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
4636oveq2d 7172 . . . . . . . . . . 11 (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁))
4746eleq2d 2898 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0..^(♯‘𝐻)) ↔ 𝑥 ∈ (0..^𝑁)))
4840fveq1i 6671 . . . . . . . . . . . . 13 (𝑄𝑥) = ((𝑃 ↾ (0...𝑁))‘𝑥)
49 fzossfz 13057 . . . . . . . . . . . . . . . 16 (0..^𝑁) ⊆ (0...𝑁)
5049a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (0..^𝑁) ⊆ (0...𝑁))
5150sselda 3967 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0...𝑁))
5251fvresd 6690 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘𝑥) = (𝑃𝑥))
5348, 52syl5req 2869 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝑃𝑥) = (𝑄𝑥))
5440fveq1i 6671 . . . . . . . . . . . . 13 (𝑄‘(𝑥 + 1)) = ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1))
55 fzofzp1 13135 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^𝑁) → (𝑥 + 1) ∈ (0...𝑁))
5655adantl 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (0...𝑁))
5756fvresd 6690 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1)) = (𝑃‘(𝑥 + 1)))
5854, 57syl5req 2869 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))
5953, 58jca 514 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))
6059ex 415 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0..^𝑁) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))))
6147, 60sylbid 242 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0..^(♯‘𝐻)) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))))
6261imp 409 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))
6310ancli 551 . . . . . . . . . . . . . 14 (𝜑 → (𝜑𝐹 ∈ Word dom 𝐼))
6411ffund 6518 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Word dom 𝐼 → Fun 𝐹)
6564adantl 484 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ Word dom 𝐼) → Fun 𝐹)
6665adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → Fun 𝐹)
67 fdm 6522 . . . . . . . . . . . . . . . . . 18 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹)))
68 elfzouz2 13053 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
69 fzoss2 13066 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
7027, 68, 693syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
71 sseq2 3993 . . . . . . . . . . . . . . . . . . 19 (dom 𝐹 = (0..^(♯‘𝐹)) → ((0..^𝑁) ⊆ dom 𝐹 ↔ (0..^𝑁) ⊆ (0..^(♯‘𝐹))))
7270, 71syl5ibr 248 . . . . . . . . . . . . . . . . . 18 (dom 𝐹 = (0..^(♯‘𝐹)) → (𝜑 → (0..^𝑁) ⊆ dom 𝐹))
7311, 67, 723syl 18 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Word dom 𝐼 → (𝜑 → (0..^𝑁) ⊆ dom 𝐹))
7473impcom 410 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ Word dom 𝐼) → (0..^𝑁) ⊆ dom 𝐹)
7574adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → (0..^𝑁) ⊆ dom 𝐹)
76 simpr 487 . . . . . . . . . . . . . . 15 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁))
7766, 75, 76resfvresima 6997 . . . . . . . . . . . . . 14 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹𝑥)))
7863, 77sylan 582 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹𝑥)))
7978eqcomd 2827 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))
8079ex 415 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))))
8147, 80sylbid 242 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0..^(♯‘𝐻)) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))))
8281imp 409 . . . . . . . . 9 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))
838adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
846fveq1i 6671 . . . . . . . . . . 11 (𝐻𝑥) = ((𝐹 prefix 𝑁)‘𝑥)
8510adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → 𝐹 ∈ Word dom 𝐼)
8628adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → 𝑁 ∈ (0...(♯‘𝐹)))
87 pfxres 14041 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom 𝐼𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
8885, 86, 87syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
8988fveq1d 6672 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → ((𝐹 prefix 𝑁)‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥))
9084, 89syl5eq 2868 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (𝐻𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥))
9183, 90fveq12d 6677 . . . . . . . . 9 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → ((iEdg‘𝑆)‘(𝐻𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))
9282, 91eqtr4d 2859 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥)))
9362, 92jca 514 . . . . . . 7 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))))
9427, 68syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐹) ∈ (ℤ𝑁))
9536fveq2d 6674 . . . . . . . . . . 11 (𝜑 → (ℤ‘(♯‘𝐻)) = (ℤ𝑁))
9694, 95eleqtrrd 2916 . . . . . . . . . 10 (𝜑 → (♯‘𝐹) ∈ (ℤ‘(♯‘𝐻)))
97 fzoss2 13066 . . . . . . . . . 10 ((♯‘𝐹) ∈ (ℤ‘(♯‘𝐻)) → (0..^(♯‘𝐻)) ⊆ (0..^(♯‘𝐹)))
9896, 97syl 17 . . . . . . . . 9 (𝜑 → (0..^(♯‘𝐻)) ⊆ (0..^(♯‘𝐹)))
9998sselda 3967 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → 𝑥 ∈ (0..^(♯‘𝐹)))
100 wkslem1 27389 . . . . . . . . 9 (𝑘 = 𝑥 → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)))))
101100rspcv 3618 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)))))
10299, 101syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)))))
103 eqeq12 2835 . . . . . . . . . 10 (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → ((𝑃𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄𝑥) = (𝑄‘(𝑥 + 1))))
104103adantr 483 . . . . . . . . 9 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → ((𝑃𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄𝑥) = (𝑄‘(𝑥 + 1))))
105 simpr 487 . . . . . . . . . 10 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥)))
106 sneq 4577 . . . . . . . . . . . 12 ((𝑃𝑥) = (𝑄𝑥) → {(𝑃𝑥)} = {(𝑄𝑥)})
107106adantr 483 . . . . . . . . . . 11 (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃𝑥)} = {(𝑄𝑥)})
108107adantr 483 . . . . . . . . . 10 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → {(𝑃𝑥)} = {(𝑄𝑥)})
109105, 108eqeq12d 2837 . . . . . . . . 9 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥)} ↔ ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}))
110 preq12 4671 . . . . . . . . . . 11 (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄𝑥), (𝑄‘(𝑥 + 1))})
111110adantr 483 . . . . . . . . . 10 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄𝑥), (𝑄‘(𝑥 + 1))})
112111, 105sseq12d 4000 . . . . . . . . 9 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)) ↔ {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))
113104, 109, 112ifpbi123d 1072 . . . . . . . 8 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥))) ↔ if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
114113biimpd 231 . . . . . . 7 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
11593, 102, 114sylsyld 61 . . . . . 6 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
116115com12 32 . . . . 5 (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
1171163ad2ant3 1131 . . . 4 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
11845, 117mpcom 38 . . 3 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))
119118ralrimiva 3182 . 2 (𝜑 → ∀𝑥 ∈ (0..^(♯‘𝐻))if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))
12020, 2, 1, 27, 23wlkreslem 27451 . . 3 (𝜑𝑆 ∈ V)
121 eqid 2821 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
122 eqid 2821 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
123121, 122iswlkg 27395 . . 3 (𝑆 ∈ V → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(♯‘𝐻))if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))))
124120, 123syl 17 . 2 (𝜑 → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(♯‘𝐻))if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))))
12519, 42, 119, 124mpbir3and 1338 1 (𝜑𝐻(Walks‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  if-wif 1057  w3a 1083   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  wss 3936  {csn 4567  {cpr 4569   class class class wbr 5066  dom cdm 5555  cres 5557  cima 5558  Fun wfun 6349  wf 6351  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538   + caddc 10540  cuz 12244  ...cfz 12893  ..^cfzo 13034  chash 13691  Word cword 13862   prefix cpfx 14032  Vtxcvtx 26781  iEdgciedg 26782  Walkscwlks 27378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-substr 14003  df-pfx 14033  df-wlks 27381
This theorem is referenced by:  trlres  27482  eupthres  27994
  Copyright terms: Public domain W3C validator