MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkres Structured version   Visualization version   GIF version

Theorem wlkres 25812
Description: Restrictions of walks (i.e. special kinds of walks, for example paths - see pths 25858) are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
Hypothesis
Ref Expression
wlkres.1 (𝑓(𝑉𝑊𝐸)𝑝𝑓(𝑉 Walks 𝐸)𝑝)
Assertion
Ref Expression
wlkres ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜑)} ∈ V)
Distinct variable groups:   𝑓,𝐸,𝑝   𝑓,𝑉,𝑝
Allowed substitution hints:   𝜑(𝑓,𝑝)   𝑊(𝑓,𝑝)

Proof of Theorem wlkres
StepHypRef Expression
1 wlkres.1 . . . 4 (𝑓(𝑉𝑊𝐸)𝑝𝑓(𝑉 Walks 𝐸)𝑝)
2 2mwlk 25811 . . . 4 (𝑓(𝑉 Walks 𝐸)𝑝 → (𝑓 ∈ Word dom 𝐸𝑝:(0...(#‘𝑓))⟶𝑉))
31, 2syl 17 . . 3 (𝑓(𝑉𝑊𝐸)𝑝 → (𝑓 ∈ Word dom 𝐸𝑝:(0...(#‘𝑓))⟶𝑉))
43gen2 1712 . 2 𝑓𝑝(𝑓(𝑉𝑊𝐸)𝑝 → (𝑓 ∈ Word dom 𝐸𝑝:(0...(#‘𝑓))⟶𝑉))
5 dmexg 6962 . . . . 5 (𝐸 ∈ V → dom 𝐸 ∈ V)
65adantl 480 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → dom 𝐸 ∈ V)
7 wrdexg 13112 . . . 4 (dom 𝐸 ∈ V → Word dom 𝐸 ∈ V)
86, 7syl 17 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Word dom 𝐸 ∈ V)
9 fzfi 12584 . . . 4 (0...(#‘𝑓)) ∈ Fin
10 simpll 785 . . . 4 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑓 ∈ Word dom 𝐸) → 𝑉 ∈ V)
11 mapex 7723 . . . 4 (((0...(#‘𝑓)) ∈ Fin ∧ 𝑉 ∈ V) → {𝑝𝑝:(0...(#‘𝑓))⟶𝑉} ∈ V)
129, 10, 11sylancr 693 . . 3 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑓 ∈ Word dom 𝐸) → {𝑝𝑝:(0...(#‘𝑓))⟶𝑉} ∈ V)
138, 12opabex3d 7010 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐸𝑝:(0...(#‘𝑓))⟶𝑉)} ∈ V)
14 opabbrex 6567 . 2 ((∀𝑓𝑝(𝑓(𝑉𝑊𝐸)𝑝 → (𝑓 ∈ Word dom 𝐸𝑝:(0...(#‘𝑓))⟶𝑉)) ∧ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐸𝑝:(0...(#‘𝑓))⟶𝑉)} ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜑)} ∈ V)
154, 13, 14sylancr 693 1 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜑)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wal 1472  wcel 1975  {cab 2591  Vcvv 3168   class class class wbr 4573  {copab 4632  dom cdm 5024  wf 5782  cfv 5786  (class class class)co 6523  Fincfn 7814  0cc0 9788  ...cfz 12148  #chash 12930  Word cword 13088   Walks cwalk 25788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-er 7602  df-map 7719  df-pm 7720  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-card 8621  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-n0 11136  df-z 11207  df-uz 11516  df-fz 12149  df-fzo 12286  df-hash 12931  df-word 13096  df-wlk 25798
This theorem is referenced by:  wlkon  25823  trlon  25832  pths  25858  spths  25859  pthon  25867  spthon  25874  clwlk  26043
  Copyright terms: Public domain W3C validator