ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelelxp Unicode version

Theorem 0nelelxp 4703
Description: A member of a cross product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
0nelelxp  |-  ( C  e.  ( A  X.  B )  ->  -.  (/) 
e.  C )

Proof of Theorem 0nelelxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4691 . 2  |-  ( C  e.  ( A  X.  B )  <->  E. x E. y ( C  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B
) ) )
2 0nelop 4291 . . . 4  |-  -.  (/)  e.  <. x ,  y >.
3 simpl 109 . . . . 5  |-  ( ( C  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  C  =  <. x ,  y >.
)
43eleq2d 2274 . . . 4  |-  ( ( C  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  ( (/)  e.  C  <->  (/)  e.  <. x ,  y
>. ) )
52, 4mtbiri 676 . . 3  |-  ( ( C  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  -.  (/)  e.  C
)
65exlimivv 1919 . 2  |-  ( E. x E. y ( C  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  -.  (/)  e.  C
)
71, 6sylbi 121 1  |-  ( C  e.  ( A  X.  B )  ->  -.  (/) 
e.  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1372   E.wex 1514    e. wcel 2175   (/)c0 3459   <.cop 3635    X. cxp 4672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-opab 4105  df-xp 4680
This theorem is referenced by:  dmsn0el  5151
  Copyright terms: Public domain W3C validator