ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelelxp Unicode version

Theorem 0nelelxp 4640
Description: A member of a cross product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
0nelelxp  |-  ( C  e.  ( A  X.  B )  ->  -.  (/) 
e.  C )

Proof of Theorem 0nelelxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4628 . 2  |-  ( C  e.  ( A  X.  B )  <->  E. x E. y ( C  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B
) ) )
2 0nelop 4233 . . . 4  |-  -.  (/)  e.  <. x ,  y >.
3 simpl 108 . . . . 5  |-  ( ( C  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  C  =  <. x ,  y >.
)
43eleq2d 2240 . . . 4  |-  ( ( C  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  ( (/)  e.  C  <->  (/)  e.  <. x ,  y
>. ) )
52, 4mtbiri 670 . . 3  |-  ( ( C  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  -.  (/)  e.  C
)
65exlimivv 1889 . 2  |-  ( E. x E. y ( C  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  -.  (/)  e.  C
)
71, 6sylbi 120 1  |-  ( C  e.  ( A  X.  B )  ->  -.  (/) 
e.  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   (/)c0 3414   <.cop 3586    X. cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617
This theorem is referenced by:  dmsn0el  5080
  Copyright terms: Public domain W3C validator