ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelelxp Unicode version

Theorem 0nelelxp 4688
Description: A member of a cross product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
0nelelxp  |-  ( C  e.  ( A  X.  B )  ->  -.  (/) 
e.  C )

Proof of Theorem 0nelelxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4676 . 2  |-  ( C  e.  ( A  X.  B )  <->  E. x E. y ( C  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B
) ) )
2 0nelop 4277 . . . 4  |-  -.  (/)  e.  <. x ,  y >.
3 simpl 109 . . . . 5  |-  ( ( C  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  C  =  <. x ,  y >.
)
43eleq2d 2263 . . . 4  |-  ( ( C  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  ( (/)  e.  C  <->  (/)  e.  <. x ,  y
>. ) )
52, 4mtbiri 676 . . 3  |-  ( ( C  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  -.  (/)  e.  C
)
65exlimivv 1908 . 2  |-  ( E. x E. y ( C  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  -.  (/)  e.  C
)
71, 6sylbi 121 1  |-  ( C  e.  ( A  X.  B )  ->  -.  (/) 
e.  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   (/)c0 3446   <.cop 3621    X. cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665
This theorem is referenced by:  dmsn0el  5135
  Copyright terms: Public domain W3C validator