ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelelxp GIF version

Theorem 0nelelxp 4709
Description: A member of a cross product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
0nelelxp (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶)

Proof of Theorem 0nelelxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4697 . 2 (𝐶 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
2 0nelop 4297 . . . 4 ¬ ∅ ∈ ⟨𝑥, 𝑦
3 simpl 109 . . . . 5 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → 𝐶 = ⟨𝑥, 𝑦⟩)
43eleq2d 2276 . . . 4 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → (∅ ∈ 𝐶 ↔ ∅ ∈ ⟨𝑥, 𝑦⟩))
52, 4mtbiri 677 . . 3 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ¬ ∅ ∈ 𝐶)
65exlimivv 1921 . 2 (∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ¬ ∅ ∈ 𝐶)
71, 6sylbi 121 1 (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wex 1516  wcel 2177  c0 3462  cop 3638   × cxp 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-opab 4111  df-xp 4686
This theorem is referenced by:  dmsn0el  5158
  Copyright terms: Public domain W3C validator