ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelelxp GIF version

Theorem 0nelelxp 4745
Description: A member of a cross product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
0nelelxp (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶)

Proof of Theorem 0nelelxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4733 . 2 (𝐶 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
2 0nelop 4333 . . . 4 ¬ ∅ ∈ ⟨𝑥, 𝑦
3 simpl 109 . . . . 5 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → 𝐶 = ⟨𝑥, 𝑦⟩)
43eleq2d 2299 . . . 4 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → (∅ ∈ 𝐶 ↔ ∅ ∈ ⟨𝑥, 𝑦⟩))
52, 4mtbiri 679 . . 3 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ¬ ∅ ∈ 𝐶)
65exlimivv 1943 . 2 (∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ¬ ∅ ∈ 𝐶)
71, 6sylbi 121 1 (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  c0 3491  cop 3669   × cxp 4714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4145  df-xp 4722
This theorem is referenced by:  dmsn0el  5194
  Copyright terms: Public domain W3C validator