| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0nelelxp | GIF version | ||
| Description: A member of a cross product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.) | 
| Ref | Expression | 
|---|---|
| 0nelelxp | ⊢ (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elxp 4680 | . 2 ⊢ (𝐶 ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
| 2 | 0nelop 4281 | . . . 4 ⊢ ¬ ∅ ∈ 〈𝑥, 𝑦〉 | |
| 3 | simpl 109 | . . . . 5 ⊢ ((𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 〈𝑥, 𝑦〉) | |
| 4 | 3 | eleq2d 2266 | . . . 4 ⊢ ((𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (∅ ∈ 𝐶 ↔ ∅ ∈ 〈𝑥, 𝑦〉)) | 
| 5 | 2, 4 | mtbiri 676 | . . 3 ⊢ ((𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ¬ ∅ ∈ 𝐶) | 
| 6 | 5 | exlimivv 1911 | . 2 ⊢ (∃𝑥∃𝑦(𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ¬ ∅ ∈ 𝐶) | 
| 7 | 1, 6 | sylbi 121 | 1 ⊢ (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∅c0 3450 〈cop 3625 × cxp 4661 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-xp 4669 | 
| This theorem is referenced by: dmsn0el 5139 | 
| Copyright terms: Public domain | W3C validator |