Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmsn0el | Unicode version |
Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.) |
Ref | Expression |
---|---|
dmsn0el |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelelxp 4649 | . . . . 5 | |
2 | 1 | con2i 627 | . . . 4 |
3 | dmsnm 5086 | . . . 4 | |
4 | 2, 3 | sylnib 676 | . . 3 |
5 | alnex 1497 | . . 3 | |
6 | 4, 5 | sylibr 134 | . 2 |
7 | eq0 3439 | . 2 | |
8 | 6, 7 | sylibr 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wal 1351 wceq 1353 wex 1490 wcel 2146 cvv 2735 c0 3420 csn 3589 cxp 4618 cdm 4620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-dm 4630 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |