ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsn0el Unicode version

Theorem dmsn0el 5149
Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
dmsn0el  |-  ( (/)  e.  A  ->  dom  { A }  =  (/) )

Proof of Theorem dmsn0el
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0nelelxp 4702 . . . . 5  |-  ( A  e.  ( _V  X.  _V )  ->  -.  (/)  e.  A
)
21con2i 628 . . . 4  |-  ( (/)  e.  A  ->  -.  A  e.  ( _V  X.  _V ) )
3 dmsnm 5145 . . . 4  |-  ( A  e.  ( _V  X.  _V )  <->  E. x  x  e. 
dom  { A } )
42, 3sylnib 677 . . 3  |-  ( (/)  e.  A  ->  -.  E. x  x  e.  dom  { A } )
5 alnex 1521 . . 3  |-  ( A. x  -.  x  e.  dom  { A }  <->  -.  E. x  x  e.  dom  { A } )
64, 5sylibr 134 . 2  |-  ( (/)  e.  A  ->  A. x  -.  x  e.  dom  { A } )
7 eq0 3478 . 2  |-  ( dom 
{ A }  =  (/)  <->  A. x  -.  x  e. 
dom  { A } )
86, 7sylibr 134 1  |-  ( (/)  e.  A  ->  dom  { A }  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1370    = wceq 1372   E.wex 1514    e. wcel 2175   _Vcvv 2771   (/)c0 3459   {csn 3632    X. cxp 4671   dom cdm 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4679  df-dm 4683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator