ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsn0el Unicode version

Theorem dmsn0el 5100
Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
dmsn0el  |-  ( (/)  e.  A  ->  dom  { A }  =  (/) )

Proof of Theorem dmsn0el
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0nelelxp 4657 . . . . 5  |-  ( A  e.  ( _V  X.  _V )  ->  -.  (/)  e.  A
)
21con2i 627 . . . 4  |-  ( (/)  e.  A  ->  -.  A  e.  ( _V  X.  _V ) )
3 dmsnm 5096 . . . 4  |-  ( A  e.  ( _V  X.  _V )  <->  E. x  x  e. 
dom  { A } )
42, 3sylnib 676 . . 3  |-  ( (/)  e.  A  ->  -.  E. x  x  e.  dom  { A } )
5 alnex 1499 . . 3  |-  ( A. x  -.  x  e.  dom  { A }  <->  -.  E. x  x  e.  dom  { A } )
64, 5sylibr 134 . 2  |-  ( (/)  e.  A  ->  A. x  -.  x  e.  dom  { A } )
7 eq0 3443 . 2  |-  ( dom 
{ A }  =  (/)  <->  A. x  -.  x  e. 
dom  { A } )
86, 7sylibr 134 1  |-  ( (/)  e.  A  ->  dom  { A }  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1351    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2739   (/)c0 3424   {csn 3594    X. cxp 4626   dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-dm 4638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator