| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxp | Unicode version | ||
| Description: Membership in a cross product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| elxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 4699 |
. . 3
| |
| 2 | 1 | eleq2i 2274 |
. 2
|
| 3 | elopab 4322 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 df-xp 4699 |
| This theorem is referenced by: elxp2 4711 0nelxp 4721 0nelelxp 4722 rabxp 4730 elxp3 4747 elvv 4755 elvvv 4756 0xp 4773 xpmlem 5122 elxp4 5189 elxp5 5190 dfco2a 5202 opabex3d 6229 opabex3 6230 xp1st 6274 xp2nd 6275 poxp 6341 xpsnen 6941 xpcomco 6946 xpassen 6950 nqnq0pi 7586 fsum2dlemstep 11860 fprod2dlemstep 12048 |
| Copyright terms: Public domain | W3C validator |