| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxp | Unicode version | ||
| Description: Membership in a cross product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| elxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 4681 |
. . 3
| |
| 2 | 1 | eleq2i 2272 |
. 2
|
| 3 | elopab 4304 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-xp 4681 |
| This theorem is referenced by: elxp2 4693 0nelxp 4703 0nelelxp 4704 rabxp 4712 elxp3 4729 elvv 4737 elvvv 4738 0xp 4755 xpmlem 5103 elxp4 5170 elxp5 5171 dfco2a 5183 opabex3d 6206 opabex3 6207 xp1st 6251 xp2nd 6252 poxp 6318 xpsnen 6916 xpcomco 6921 xpassen 6925 nqnq0pi 7551 fsum2dlemstep 11745 fprod2dlemstep 11933 |
| Copyright terms: Public domain | W3C validator |