ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp Unicode version

Theorem elxp 4621
Description: Membership in a cross product. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elxp  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem elxp
StepHypRef Expression
1 df-xp 4610 . . 3  |-  ( B  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  C ) }
21eleq2i 2233 . 2  |-  ( A  e.  ( B  X.  C )  <->  A  e.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )
3 elopab 4236 . 2  |-  ( A  e.  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) )
42, 3bitri 183 1  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   <.cop 3579   {copab 4042    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610
This theorem is referenced by:  elxp2  4622  0nelxp  4632  0nelelxp  4633  rabxp  4641  elxp3  4658  elvv  4666  elvvv  4667  0xp  4684  xpmlem  5024  elxp4  5091  elxp5  5092  dfco2a  5104  opabex3d  6089  opabex3  6090  xp1st  6133  xp2nd  6134  poxp  6200  xpsnen  6787  xpcomco  6792  xpassen  6796  nqnq0pi  7379  fsum2dlemstep  11375  fprod2dlemstep  11563
  Copyright terms: Public domain W3C validator