| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxp | Unicode version | ||
| Description: Membership in a cross product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| elxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 4680 |
. . 3
| |
| 2 | 1 | eleq2i 2271 |
. 2
|
| 3 | elopab 4303 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-opab 4105 df-xp 4680 |
| This theorem is referenced by: elxp2 4692 0nelxp 4702 0nelelxp 4703 rabxp 4711 elxp3 4728 elvv 4736 elvvv 4737 0xp 4754 xpmlem 5102 elxp4 5169 elxp5 5170 dfco2a 5182 opabex3d 6205 opabex3 6206 xp1st 6250 xp2nd 6251 poxp 6317 xpsnen 6915 xpcomco 6920 xpassen 6924 nqnq0pi 7550 fsum2dlemstep 11716 fprod2dlemstep 11904 |
| Copyright terms: Public domain | W3C validator |