ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp Unicode version

Theorem elxp 4556
Description: Membership in a cross product. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elxp  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem elxp
StepHypRef Expression
1 df-xp 4545 . . 3  |-  ( B  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  C ) }
21eleq2i 2206 . 2  |-  ( A  e.  ( B  X.  C )  <->  A  e.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )
3 elopab 4180 . 2  |-  ( A  e.  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) )
42, 3bitri 183 1  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   <.cop 3530   {copab 3988    X. cxp 4537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-opab 3990  df-xp 4545
This theorem is referenced by:  elxp2  4557  0nelxp  4567  0nelelxp  4568  rabxp  4576  elxp3  4593  elvv  4601  elvvv  4602  0xp  4619  xpmlem  4959  elxp4  5026  elxp5  5027  dfco2a  5039  opabex3d  6019  opabex3  6020  xp1st  6063  xp2nd  6064  poxp  6129  xpsnen  6715  xpcomco  6720  xpassen  6724  nqnq0pi  7258  fsum2dlemstep  11215
  Copyright terms: Public domain W3C validator