| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxp | Unicode version | ||
| Description: Membership in a cross product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| elxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 4724 |
. . 3
| |
| 2 | 1 | eleq2i 2296 |
. 2
|
| 3 | elopab 4345 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-xp 4724 |
| This theorem is referenced by: elxp2 4736 0nelxp 4746 0nelelxp 4747 rabxp 4755 elxp3 4772 elvv 4780 elvvv 4781 0xp 4798 xpmlem 5148 elxp4 5215 elxp5 5216 dfco2a 5228 opabex3d 6264 opabex3 6265 xp1st 6309 xp2nd 6310 poxp 6376 xpsnen 6976 xpcomco 6981 xpassen 6985 nqnq0pi 7621 fsum2dlemstep 11940 fprod2dlemstep 12128 |
| Copyright terms: Public domain | W3C validator |