ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp Unicode version

Theorem elxp 4735
Description: Membership in a cross product. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elxp  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem elxp
StepHypRef Expression
1 df-xp 4724 . . 3  |-  ( B  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  C ) }
21eleq2i 2296 . 2  |-  ( A  e.  ( B  X.  C )  <->  A  e.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )
3 elopab 4345 . 2  |-  ( A  e.  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) )
42, 3bitri 184 1  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   <.cop 3669   {copab 4143    X. cxp 4716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4145  df-xp 4724
This theorem is referenced by:  elxp2  4736  0nelxp  4746  0nelelxp  4747  rabxp  4755  elxp3  4772  elvv  4780  elvvv  4781  0xp  4798  xpmlem  5148  elxp4  5215  elxp5  5216  dfco2a  5228  opabex3d  6264  opabex3  6265  xp1st  6309  xp2nd  6310  poxp  6376  xpsnen  6976  xpcomco  6981  xpassen  6985  nqnq0pi  7621  fsum2dlemstep  11940  fprod2dlemstep  12128
  Copyright terms: Public domain W3C validator