Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elxp | Unicode version |
Description: Membership in a cross product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 4626 | . . 3 | |
2 | 1 | eleq2i 2242 | . 2 |
3 | elopab 4252 | . 2 | |
4 | 2, 3 | bitri 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 wceq 1353 wex 1490 wcel 2146 cop 3592 copab 4058 cxp 4618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-opab 4060 df-xp 4626 |
This theorem is referenced by: elxp2 4638 0nelxp 4648 0nelelxp 4649 rabxp 4657 elxp3 4674 elvv 4682 elvvv 4683 0xp 4700 xpmlem 5041 elxp4 5108 elxp5 5109 dfco2a 5121 opabex3d 6112 opabex3 6113 xp1st 6156 xp2nd 6157 poxp 6223 xpsnen 6811 xpcomco 6816 xpassen 6820 nqnq0pi 7412 fsum2dlemstep 11410 fprod2dlemstep 11598 |
Copyright terms: Public domain | W3C validator |