Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ov6g | Unicode version |
Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.) |
Ref | Expression |
---|---|
ov6g.1 | |
ov6g.2 |
Ref | Expression |
---|---|
ov6g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5845 | . 2 | |
2 | eqid 2165 | . . . . . 6 | |
3 | biidd 171 | . . . . . . 7 | |
4 | 3 | copsex2g 4224 | . . . . . 6 |
5 | 2, 4 | mpbiri 167 | . . . . 5 |
6 | 5 | 3adant3 1007 | . . . 4 |
7 | 6 | adantr 274 | . . 3 |
8 | eqeq1 2172 | . . . . . . . 8 | |
9 | 8 | anbi1d 461 | . . . . . . 7 |
10 | ov6g.1 | . . . . . . . . . 10 | |
11 | 10 | eqeq2d 2177 | . . . . . . . . 9 |
12 | 11 | eqcoms 2168 | . . . . . . . 8 |
13 | 12 | pm5.32i 450 | . . . . . . 7 |
14 | 9, 13 | bitrdi 195 | . . . . . 6 |
15 | 14 | 2exbidv 1856 | . . . . 5 |
16 | eqeq1 2172 | . . . . . . 7 | |
17 | 16 | anbi2d 460 | . . . . . 6 |
18 | 17 | 2exbidv 1856 | . . . . 5 |
19 | moeq 2901 | . . . . . . 7 | |
20 | 19 | mosubop 4670 | . . . . . 6 |
21 | 20 | a1i 9 | . . . . 5 |
22 | ov6g.2 | . . . . . 6 | |
23 | dfoprab2 5889 | . . . . . 6 | |
24 | eleq1 2229 | . . . . . . . . . . . 12 | |
25 | 24 | anbi1d 461 | . . . . . . . . . . 11 |
26 | 25 | pm5.32i 450 | . . . . . . . . . 10 |
27 | an12 551 | . . . . . . . . . 10 | |
28 | 26, 27 | bitr3i 185 | . . . . . . . . 9 |
29 | 28 | 2exbii 1594 | . . . . . . . 8 |
30 | 19.42vv 1899 | . . . . . . . 8 | |
31 | 29, 30 | bitri 183 | . . . . . . 7 |
32 | 31 | opabbii 4049 | . . . . . 6 |
33 | 22, 23, 32 | 3eqtri 2190 | . . . . 5 |
34 | 15, 18, 21, 33 | fvopab3ig 5560 | . . . 4 |
35 | 34 | 3ad2antl3 1151 | . . 3 |
36 | 7, 35 | mpd 13 | . 2 |
37 | 1, 36 | syl5eq 2211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wex 1480 wmo 2015 wcel 2136 cop 3579 copab 4042 cfv 5188 (class class class)co 5842 coprab 5843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |