Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ov6g | Unicode version |
Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.) |
Ref | Expression |
---|---|
ov6g.1 | |
ov6g.2 |
Ref | Expression |
---|---|
ov6g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5856 | . 2 | |
2 | eqid 2170 | . . . . . 6 | |
3 | biidd 171 | . . . . . . 7 | |
4 | 3 | copsex2g 4231 | . . . . . 6 |
5 | 2, 4 | mpbiri 167 | . . . . 5 |
6 | 5 | 3adant3 1012 | . . . 4 |
7 | 6 | adantr 274 | . . 3 |
8 | eqeq1 2177 | . . . . . . . 8 | |
9 | 8 | anbi1d 462 | . . . . . . 7 |
10 | ov6g.1 | . . . . . . . . . 10 | |
11 | 10 | eqeq2d 2182 | . . . . . . . . 9 |
12 | 11 | eqcoms 2173 | . . . . . . . 8 |
13 | 12 | pm5.32i 451 | . . . . . . 7 |
14 | 9, 13 | bitrdi 195 | . . . . . 6 |
15 | 14 | 2exbidv 1861 | . . . . 5 |
16 | eqeq1 2177 | . . . . . . 7 | |
17 | 16 | anbi2d 461 | . . . . . 6 |
18 | 17 | 2exbidv 1861 | . . . . 5 |
19 | moeq 2905 | . . . . . . 7 | |
20 | 19 | mosubop 4677 | . . . . . 6 |
21 | 20 | a1i 9 | . . . . 5 |
22 | ov6g.2 | . . . . . 6 | |
23 | dfoprab2 5900 | . . . . . 6 | |
24 | eleq1 2233 | . . . . . . . . . . . 12 | |
25 | 24 | anbi1d 462 | . . . . . . . . . . 11 |
26 | 25 | pm5.32i 451 | . . . . . . . . . 10 |
27 | an12 556 | . . . . . . . . . 10 | |
28 | 26, 27 | bitr3i 185 | . . . . . . . . 9 |
29 | 28 | 2exbii 1599 | . . . . . . . 8 |
30 | 19.42vv 1904 | . . . . . . . 8 | |
31 | 29, 30 | bitri 183 | . . . . . . 7 |
32 | 31 | opabbii 4056 | . . . . . 6 |
33 | 22, 23, 32 | 3eqtri 2195 | . . . . 5 |
34 | 15, 18, 21, 33 | fvopab3ig 5570 | . . . 4 |
35 | 34 | 3ad2antl3 1156 | . . 3 |
36 | 7, 35 | mpd 13 | . 2 |
37 | 1, 36 | eqtrid 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wex 1485 wmo 2020 wcel 2141 cop 3586 copab 4049 cfv 5198 (class class class)co 5853 coprab 5854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |