| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ov6g | Unicode version | ||
| Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.) |
| Ref | Expression |
|---|---|
| ov6g.1 |
|
| ov6g.2 |
|
| Ref | Expression |
|---|---|
| ov6g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5970 |
. 2
| |
| 2 | eqid 2207 |
. . . . . 6
| |
| 3 | biidd 172 |
. . . . . . 7
| |
| 4 | 3 | copsex2g 4308 |
. . . . . 6
|
| 5 | 2, 4 | mpbiri 168 |
. . . . 5
|
| 6 | 5 | 3adant3 1020 |
. . . 4
|
| 7 | 6 | adantr 276 |
. . 3
|
| 8 | eqeq1 2214 |
. . . . . . . 8
| |
| 9 | 8 | anbi1d 465 |
. . . . . . 7
|
| 10 | ov6g.1 |
. . . . . . . . . 10
| |
| 11 | 10 | eqeq2d 2219 |
. . . . . . . . 9
|
| 12 | 11 | eqcoms 2210 |
. . . . . . . 8
|
| 13 | 12 | pm5.32i 454 |
. . . . . . 7
|
| 14 | 9, 13 | bitrdi 196 |
. . . . . 6
|
| 15 | 14 | 2exbidv 1892 |
. . . . 5
|
| 16 | eqeq1 2214 |
. . . . . . 7
| |
| 17 | 16 | anbi2d 464 |
. . . . . 6
|
| 18 | 17 | 2exbidv 1892 |
. . . . 5
|
| 19 | moeq 2955 |
. . . . . . 7
| |
| 20 | 19 | mosubop 4759 |
. . . . . 6
|
| 21 | 20 | a1i 9 |
. . . . 5
|
| 22 | ov6g.2 |
. . . . . 6
| |
| 23 | dfoprab2 6015 |
. . . . . 6
| |
| 24 | eleq1 2270 |
. . . . . . . . . . . 12
| |
| 25 | 24 | anbi1d 465 |
. . . . . . . . . . 11
|
| 26 | 25 | pm5.32i 454 |
. . . . . . . . . 10
|
| 27 | an12 561 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | bitr3i 186 |
. . . . . . . . 9
|
| 29 | 28 | 2exbii 1630 |
. . . . . . . 8
|
| 30 | 19.42vv 1936 |
. . . . . . . 8
| |
| 31 | 29, 30 | bitri 184 |
. . . . . . 7
|
| 32 | 31 | opabbii 4127 |
. . . . . 6
|
| 33 | 22, 23, 32 | 3eqtri 2232 |
. . . . 5
|
| 34 | 15, 18, 21, 33 | fvopab3ig 5676 |
. . . 4
|
| 35 | 34 | 3ad2antl3 1164 |
. . 3
|
| 36 | 7, 35 | mpd 13 |
. 2
|
| 37 | 1, 36 | eqtrid 2252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |