| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ov6g | Unicode version | ||
| Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.) |
| Ref | Expression |
|---|---|
| ov6g.1 |
|
| ov6g.2 |
|
| Ref | Expression |
|---|---|
| ov6g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5947 |
. 2
| |
| 2 | eqid 2205 |
. . . . . 6
| |
| 3 | biidd 172 |
. . . . . . 7
| |
| 4 | 3 | copsex2g 4290 |
. . . . . 6
|
| 5 | 2, 4 | mpbiri 168 |
. . . . 5
|
| 6 | 5 | 3adant3 1020 |
. . . 4
|
| 7 | 6 | adantr 276 |
. . 3
|
| 8 | eqeq1 2212 |
. . . . . . . 8
| |
| 9 | 8 | anbi1d 465 |
. . . . . . 7
|
| 10 | ov6g.1 |
. . . . . . . . . 10
| |
| 11 | 10 | eqeq2d 2217 |
. . . . . . . . 9
|
| 12 | 11 | eqcoms 2208 |
. . . . . . . 8
|
| 13 | 12 | pm5.32i 454 |
. . . . . . 7
|
| 14 | 9, 13 | bitrdi 196 |
. . . . . 6
|
| 15 | 14 | 2exbidv 1891 |
. . . . 5
|
| 16 | eqeq1 2212 |
. . . . . . 7
| |
| 17 | 16 | anbi2d 464 |
. . . . . 6
|
| 18 | 17 | 2exbidv 1891 |
. . . . 5
|
| 19 | moeq 2948 |
. . . . . . 7
| |
| 20 | 19 | mosubop 4741 |
. . . . . 6
|
| 21 | 20 | a1i 9 |
. . . . 5
|
| 22 | ov6g.2 |
. . . . . 6
| |
| 23 | dfoprab2 5992 |
. . . . . 6
| |
| 24 | eleq1 2268 |
. . . . . . . . . . . 12
| |
| 25 | 24 | anbi1d 465 |
. . . . . . . . . . 11
|
| 26 | 25 | pm5.32i 454 |
. . . . . . . . . 10
|
| 27 | an12 561 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | bitr3i 186 |
. . . . . . . . 9
|
| 29 | 28 | 2exbii 1629 |
. . . . . . . 8
|
| 30 | 19.42vv 1935 |
. . . . . . . 8
| |
| 31 | 29, 30 | bitri 184 |
. . . . . . 7
|
| 32 | 31 | opabbii 4111 |
. . . . . 6
|
| 33 | 22, 23, 32 | 3eqtri 2230 |
. . . . 5
|
| 34 | 15, 18, 21, 33 | fvopab3ig 5653 |
. . . 4
|
| 35 | 34 | 3ad2antl3 1164 |
. . 3
|
| 36 | 7, 35 | mpd 13 |
. 2
|
| 37 | 1, 36 | eqtrid 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |