Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ov6g | Unicode version |
Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.) |
Ref | Expression |
---|---|
ov6g.1 | |
ov6g.2 |
Ref | Expression |
---|---|
ov6g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5821 | . 2 | |
2 | eqid 2157 | . . . . . 6 | |
3 | biidd 171 | . . . . . . 7 | |
4 | 3 | copsex2g 4205 | . . . . . 6 |
5 | 2, 4 | mpbiri 167 | . . . . 5 |
6 | 5 | 3adant3 1002 | . . . 4 |
7 | 6 | adantr 274 | . . 3 |
8 | eqeq1 2164 | . . . . . . . 8 | |
9 | 8 | anbi1d 461 | . . . . . . 7 |
10 | ov6g.1 | . . . . . . . . . 10 | |
11 | 10 | eqeq2d 2169 | . . . . . . . . 9 |
12 | 11 | eqcoms 2160 | . . . . . . . 8 |
13 | 12 | pm5.32i 450 | . . . . . . 7 |
14 | 9, 13 | bitrdi 195 | . . . . . 6 |
15 | 14 | 2exbidv 1848 | . . . . 5 |
16 | eqeq1 2164 | . . . . . . 7 | |
17 | 16 | anbi2d 460 | . . . . . 6 |
18 | 17 | 2exbidv 1848 | . . . . 5 |
19 | moeq 2887 | . . . . . . 7 | |
20 | 19 | mosubop 4649 | . . . . . 6 |
21 | 20 | a1i 9 | . . . . 5 |
22 | ov6g.2 | . . . . . 6 | |
23 | dfoprab2 5862 | . . . . . 6 | |
24 | eleq1 2220 | . . . . . . . . . . . 12 | |
25 | 24 | anbi1d 461 | . . . . . . . . . . 11 |
26 | 25 | pm5.32i 450 | . . . . . . . . . 10 |
27 | an12 551 | . . . . . . . . . 10 | |
28 | 26, 27 | bitr3i 185 | . . . . . . . . 9 |
29 | 28 | 2exbii 1586 | . . . . . . . 8 |
30 | 19.42vv 1891 | . . . . . . . 8 | |
31 | 29, 30 | bitri 183 | . . . . . . 7 |
32 | 31 | opabbii 4031 | . . . . . 6 |
33 | 22, 23, 32 | 3eqtri 2182 | . . . . 5 |
34 | 15, 18, 21, 33 | fvopab3ig 5539 | . . . 4 |
35 | 34 | 3ad2antl3 1146 | . . 3 |
36 | 7, 35 | mpd 13 | . 2 |
37 | 1, 36 | syl5eq 2202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wex 1472 wmo 2007 wcel 2128 cop 3563 copab 4024 cfv 5167 (class class class)co 5818 coprab 5819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-ov 5821 df-oprab 5822 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |