ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxpi Unicode version

Theorem elxpi 4563
Description: Membership in a cross product. Uses fewer axioms than elxp 4564. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elxpi  |-  ( A  e.  ( B  X.  C )  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem elxpi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2147 . . . . . 6  |-  ( z  =  A  ->  (
z  =  <. x ,  y >.  <->  A  =  <. x ,  y >.
) )
21anbi1d 461 . . . . 5  |-  ( z  =  A  ->  (
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
)  <->  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) ) )
322exbidv 1841 . . . 4  |-  ( z  =  A  ->  ( E. x E. y ( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
)  <->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) ) )
43elabg 2834 . . 3  |-  ( A  e.  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) }  ->  ( A  e.  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) }  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) ) )
54ibi 175 . 2  |-  ( A  e.  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) }  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
6 df-xp 4553 . . 3  |-  ( B  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  C ) }
7 df-opab 3998 . . 3  |-  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) }
86, 7eqtri 2161 . 2  |-  ( B  X.  C )  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ( x  e.  B  /\  y  e.  C ) ) }
95, 8eleq2s 2235 1  |-  ( A  e.  ( B  X.  C )  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332   E.wex 1469    e. wcel 1481   {cab 2126   <.cop 3535   {copab 3996    X. cxp 4545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-opab 3998  df-xp 4553
This theorem is referenced by:  xpsspw  4659  dmaddpqlem  7209  nqpi  7210  enq0ref  7265  nqnq0  7273  nq0nn  7274  cnm  7664  axaddcl  7696  axmulcl  7698
  Copyright terms: Public domain W3C validator