Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elxpi | Unicode version |
Description: Membership in a cross product. Uses fewer axioms than elxp 4628. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elxpi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2177 | . . . . . 6 | |
2 | 1 | anbi1d 462 | . . . . 5 |
3 | 2 | 2exbidv 1861 | . . . 4 |
4 | 3 | elabg 2876 | . . 3 |
5 | 4 | ibi 175 | . 2 |
6 | df-xp 4617 | . . 3 | |
7 | df-opab 4051 | . . 3 | |
8 | 6, 7 | eqtri 2191 | . 2 |
9 | 5, 8 | eleq2s 2265 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 cab 2156 cop 3586 copab 4049 cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-opab 4051 df-xp 4617 |
This theorem is referenced by: xpsspw 4723 dmaddpqlem 7339 nqpi 7340 enq0ref 7395 nqnq0 7403 nq0nn 7404 cnm 7794 axaddcl 7826 axmulcl 7828 |
Copyright terms: Public domain | W3C validator |