ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxpi Unicode version

Theorem elxpi 4735
Description: Membership in a cross product. Uses fewer axioms than elxp 4736. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elxpi  |-  ( A  e.  ( B  X.  C )  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem elxpi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2236 . . . . . 6  |-  ( z  =  A  ->  (
z  =  <. x ,  y >.  <->  A  =  <. x ,  y >.
) )
21anbi1d 465 . . . . 5  |-  ( z  =  A  ->  (
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
)  <->  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) ) )
322exbidv 1914 . . . 4  |-  ( z  =  A  ->  ( E. x E. y ( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
)  <->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) ) )
43elabg 2949 . . 3  |-  ( A  e.  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) }  ->  ( A  e.  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) }  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) ) )
54ibi 176 . 2  |-  ( A  e.  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) }  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
6 df-xp 4725 . . 3  |-  ( B  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  C ) }
7 df-opab 4146 . . 3  |-  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) }
86, 7eqtri 2250 . 2  |-  ( B  X.  C )  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ( x  e.  B  /\  y  e.  C ) ) }
95, 8eleq2s 2324 1  |-  ( A  e.  ( B  X.  C )  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   <.cop 3669   {copab 4144    X. cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-opab 4146  df-xp 4725
This theorem is referenced by:  xpsspw  4831  dmaddpqlem  7564  nqpi  7565  enq0ref  7620  nqnq0  7628  nq0nn  7629  cnm  8019  axaddcl  8051  axmulcl  8053  fsumdvdsmul  15665
  Copyright terms: Public domain W3C validator