| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxpi | Unicode version | ||
| Description: Membership in a cross product. Uses fewer axioms than elxp 4680. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| elxpi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 |
. . . . . 6
| |
| 2 | 1 | anbi1d 465 |
. . . . 5
|
| 3 | 2 | 2exbidv 1882 |
. . . 4
|
| 4 | 3 | elabg 2910 |
. . 3
|
| 5 | 4 | ibi 176 |
. 2
|
| 6 | df-xp 4669 |
. . 3
| |
| 7 | df-opab 4095 |
. . 3
| |
| 8 | 6, 7 | eqtri 2217 |
. 2
|
| 9 | 5, 8 | eleq2s 2291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-opab 4095 df-xp 4669 |
| This theorem is referenced by: xpsspw 4775 dmaddpqlem 7444 nqpi 7445 enq0ref 7500 nqnq0 7508 nq0nn 7509 cnm 7899 axaddcl 7931 axmulcl 7933 fsumdvdsmul 15227 |
| Copyright terms: Public domain | W3C validator |