| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxpi | Unicode version | ||
| Description: Membership in a cross product. Uses fewer axioms than elxp 4736. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| elxpi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2236 |
. . . . . 6
| |
| 2 | 1 | anbi1d 465 |
. . . . 5
|
| 3 | 2 | 2exbidv 1914 |
. . . 4
|
| 4 | 3 | elabg 2949 |
. . 3
|
| 5 | 4 | ibi 176 |
. 2
|
| 6 | df-xp 4725 |
. . 3
| |
| 7 | df-opab 4146 |
. . 3
| |
| 8 | 6, 7 | eqtri 2250 |
. 2
|
| 9 | 5, 8 | eleq2s 2324 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-opab 4146 df-xp 4725 |
| This theorem is referenced by: xpsspw 4831 dmaddpqlem 7564 nqpi 7565 enq0ref 7620 nqnq0 7628 nq0nn 7629 cnm 8019 axaddcl 8051 axmulcl 8053 fsumdvdsmul 15665 |
| Copyright terms: Public domain | W3C validator |