Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elxpi | Unicode version |
Description: Membership in a cross product. Uses fewer axioms than elxp 4621. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elxpi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . . . . . 6 | |
2 | 1 | anbi1d 461 | . . . . 5 |
3 | 2 | 2exbidv 1856 | . . . 4 |
4 | 3 | elabg 2872 | . . 3 |
5 | 4 | ibi 175 | . 2 |
6 | df-xp 4610 | . . 3 | |
7 | df-opab 4044 | . . 3 | |
8 | 6, 7 | eqtri 2186 | . 2 |
9 | 5, 8 | eleq2s 2261 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 cab 2151 cop 3579 copab 4042 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-opab 4044 df-xp 4610 |
This theorem is referenced by: xpsspw 4716 dmaddpqlem 7318 nqpi 7319 enq0ref 7374 nqnq0 7382 nq0nn 7383 cnm 7773 axaddcl 7805 axmulcl 7807 |
Copyright terms: Public domain | W3C validator |