| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xltadd1 | Unicode version | ||
| Description: Extended real version of ltadd1 8504. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.) |
| Ref | Expression |
|---|---|
| xltadd1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 528 |
. . . 4
| |
| 2 | simpr 110 |
. . . 4
| |
| 3 | simpll3 1041 |
. . . 4
| |
| 4 | ltadd1 8504 |
. . . . 5
| |
| 5 | simp1 1000 |
. . . . . . 7
| |
| 6 | simp3 1002 |
. . . . . . 7
| |
| 7 | 5, 6 | rexaddd 9978 |
. . . . . 6
|
| 8 | simp2 1001 |
. . . . . . 7
| |
| 9 | 8, 6 | rexaddd 9978 |
. . . . . 6
|
| 10 | 7, 9 | breq12d 4058 |
. . . . 5
|
| 11 | 4, 10 | bitr4d 191 |
. . . 4
|
| 12 | 1, 2, 3, 11 | syl3anc 1250 |
. . 3
|
| 13 | ltpnf 9904 |
. . . . . 6
| |
| 14 | 13 | ad2antlr 489 |
. . . . 5
|
| 15 | breq2 4049 |
. . . . . 6
| |
| 16 | 15 | adantl 277 |
. . . . 5
|
| 17 | 14, 16 | mpbird 167 |
. . . 4
|
| 18 | simplr 528 |
. . . . . . 7
| |
| 19 | simpll3 1041 |
. . . . . . 7
| |
| 20 | rexadd 9976 |
. . . . . . . 8
| |
| 21 | readdcl 8053 |
. . . . . . . 8
| |
| 22 | 20, 21 | eqeltrd 2282 |
. . . . . . 7
|
| 23 | 18, 19, 22 | syl2anc 411 |
. . . . . 6
|
| 24 | ltpnf 9904 |
. . . . . 6
| |
| 25 | 23, 24 | syl 14 |
. . . . 5
|
| 26 | oveq1 5953 |
. . . . . . 7
| |
| 27 | 26 | adantl 277 |
. . . . . 6
|
| 28 | rexr 8120 |
. . . . . . . 8
| |
| 29 | renemnf 8123 |
. . . . . . . 8
| |
| 30 | xaddpnf2 9971 |
. . . . . . . 8
| |
| 31 | 28, 29, 30 | syl2anc 411 |
. . . . . . 7
|
| 32 | 19, 31 | syl 14 |
. . . . . 6
|
| 33 | 27, 32 | eqtrd 2238 |
. . . . 5
|
| 34 | 25, 33 | breqtrrd 4073 |
. . . 4
|
| 35 | 17, 34 | 2thd 175 |
. . 3
|
| 36 | mnfle 9916 |
. . . . . . . 8
| |
| 37 | 36 | 3ad2ant1 1021 |
. . . . . . 7
|
| 38 | 37 | ad2antrr 488 |
. . . . . 6
|
| 39 | mnfxr 8131 |
. . . . . . 7
| |
| 40 | simpll1 1039 |
. . . . . . 7
| |
| 41 | xrlenlt 8139 |
. . . . . . 7
| |
| 42 | 39, 40, 41 | sylancr 414 |
. . . . . 6
|
| 43 | 38, 42 | mpbid 147 |
. . . . 5
|
| 44 | breq2 4049 |
. . . . . 6
| |
| 45 | 44 | adantl 277 |
. . . . 5
|
| 46 | 43, 45 | mtbird 675 |
. . . 4
|
| 47 | 28 | 3ad2ant3 1023 |
. . . . . . . . 9
|
| 48 | 47 | ad2antrr 488 |
. . . . . . . 8
|
| 49 | xaddcl 9984 |
. . . . . . . 8
| |
| 50 | 40, 48, 49 | syl2anc 411 |
. . . . . . 7
|
| 51 | mnfle 9916 |
. . . . . . 7
| |
| 52 | 50, 51 | syl 14 |
. . . . . 6
|
| 53 | xrlenlt 8139 |
. . . . . . 7
| |
| 54 | 39, 50, 53 | sylancr 414 |
. . . . . 6
|
| 55 | 52, 54 | mpbid 147 |
. . . . 5
|
| 56 | simpr 110 |
. . . . . . . 8
| |
| 57 | 56 | oveq1d 5961 |
. . . . . . 7
|
| 58 | renepnf 8122 |
. . . . . . . . . 10
| |
| 59 | 58 | 3ad2ant3 1023 |
. . . . . . . . 9
|
| 60 | 59 | ad2antrr 488 |
. . . . . . . 8
|
| 61 | xaddmnf2 9973 |
. . . . . . . 8
| |
| 62 | 48, 60, 61 | syl2anc 411 |
. . . . . . 7
|
| 63 | 57, 62 | eqtrd 2238 |
. . . . . 6
|
| 64 | 63 | breq2d 4057 |
. . . . 5
|
| 65 | 55, 64 | mtbird 675 |
. . . 4
|
| 66 | 46, 65 | 2falsed 704 |
. . 3
|
| 67 | elxr 9900 |
. . . . . 6
| |
| 68 | 67 | biimpi 120 |
. . . . 5
|
| 69 | 68 | 3ad2ant2 1022 |
. . . 4
|
| 70 | 69 | adantr 276 |
. . 3
|
| 71 | 12, 35, 66, 70 | mpjao3dan 1320 |
. 2
|
| 72 | simpl2 1004 |
. . . . . 6
| |
| 73 | pnfge 9913 |
. . . . . 6
| |
| 74 | 72, 73 | syl 14 |
. . . . 5
|
| 75 | pnfxr 8127 |
. . . . . . 7
| |
| 76 | 75 | a1i 9 |
. . . . . 6
|
| 77 | xrlenlt 8139 |
. . . . . 6
| |
| 78 | 72, 76, 77 | syl2anc 411 |
. . . . 5
|
| 79 | 74, 78 | mpbid 147 |
. . . 4
|
| 80 | simpr 110 |
. . . . 5
| |
| 81 | 80 | breq1d 4055 |
. . . 4
|
| 82 | 79, 81 | mtbird 675 |
. . 3
|
| 83 | 47 | adantr 276 |
. . . . . . . 8
|
| 84 | xaddcl 9984 |
. . . . . . . 8
| |
| 85 | 72, 83, 84 | syl2anc 411 |
. . . . . . 7
|
| 86 | pnfge 9913 |
. . . . . . 7
| |
| 87 | 85, 86 | syl 14 |
. . . . . 6
|
| 88 | 29 | 3ad2ant3 1023 |
. . . . . . . 8
|
| 89 | 88 | adantr 276 |
. . . . . . 7
|
| 90 | 83, 89, 30 | syl2anc 411 |
. . . . . 6
|
| 91 | 87, 90 | breqtrrd 4073 |
. . . . 5
|
| 92 | xaddcl 9984 |
. . . . . . 7
| |
| 93 | 75, 83, 92 | sylancr 414 |
. . . . . 6
|
| 94 | xrlenlt 8139 |
. . . . . 6
| |
| 95 | 85, 93, 94 | syl2anc 411 |
. . . . 5
|
| 96 | 91, 95 | mpbid 147 |
. . . 4
|
| 97 | 80 | oveq1d 5961 |
. . . . 5
|
| 98 | 97 | breq1d 4055 |
. . . 4
|
| 99 | 96, 98 | mtbird 675 |
. . 3
|
| 100 | 82, 99 | 2falsed 704 |
. 2
|
| 101 | simplr 528 |
. . . . 5
| |
| 102 | mnflt 9907 |
. . . . . 6
| |
| 103 | 102 | adantl 277 |
. . . . 5
|
| 104 | 101, 103 | eqbrtrd 4067 |
. . . 4
|
| 105 | 101 | oveq1d 5961 |
. . . . . 6
|
| 106 | simpll3 1041 |
. . . . . . . 8
| |
| 107 | 106, 28 | syl 14 |
. . . . . . 7
|
| 108 | 106, 58 | syl 14 |
. . . . . . 7
|
| 109 | 107, 108, 61 | syl2anc 411 |
. . . . . 6
|
| 110 | 105, 109 | eqtrd 2238 |
. . . . 5
|
| 111 | simpr 110 |
. . . . . . 7
| |
| 112 | rexadd 9976 |
. . . . . . . 8
| |
| 113 | readdcl 8053 |
. . . . . . . 8
| |
| 114 | 112, 113 | eqeltrd 2282 |
. . . . . . 7
|
| 115 | 111, 106, 114 | syl2anc 411 |
. . . . . 6
|
| 116 | mnflt 9907 |
. . . . . 6
| |
| 117 | 115, 116 | syl 14 |
. . . . 5
|
| 118 | 110, 117 | eqbrtrd 4067 |
. . . 4
|
| 119 | 104, 118 | 2thd 175 |
. . 3
|
| 120 | simplr 528 |
. . . . 5
| |
| 121 | simpr 110 |
. . . . 5
| |
| 122 | 120, 121 | breq12d 4058 |
. . . 4
|
| 123 | oveq1 5953 |
. . . . . . 7
| |
| 124 | 47, 59, 61 | syl2anc 411 |
. . . . . . 7
|
| 125 | 123, 124 | sylan9eqr 2260 |
. . . . . 6
|
| 126 | 125 | adantr 276 |
. . . . 5
|
| 127 | 26 | adantl 277 |
. . . . . 6
|
| 128 | 47, 88, 30 | syl2anc 411 |
. . . . . . 7
|
| 129 | 128 | ad2antrr 488 |
. . . . . 6
|
| 130 | 127, 129 | eqtrd 2238 |
. . . . 5
|
| 131 | 126, 130 | breq12d 4058 |
. . . 4
|
| 132 | 122, 131 | bitr4d 191 |
. . 3
|
| 133 | simplr 528 |
. . . . 5
| |
| 134 | simpr 110 |
. . . . 5
| |
| 135 | 133, 134 | breq12d 4058 |
. . . 4
|
| 136 | 124 | ad2antrr 488 |
. . . . . 6
|
| 137 | 123 | eqeq1d 2214 |
. . . . . . 7
|
| 138 | 137 | ad2antlr 489 |
. . . . . 6
|
| 139 | 136, 138 | mpbird 167 |
. . . . 5
|
| 140 | 134 | oveq1d 5961 |
. . . . . 6
|
| 141 | 140, 136 | eqtrd 2238 |
. . . . 5
|
| 142 | 139, 141 | breq12d 4058 |
. . . 4
|
| 143 | 135, 142 | bitr4d 191 |
. . 3
|
| 144 | 69 | adantr 276 |
. . 3
|
| 145 | 119, 132, 143, 144 | mpjao3dan 1320 |
. 2
|
| 146 | elxr 9900 |
. . . 4
| |
| 147 | 146 | biimpi 120 |
. . 3
|
| 148 | 147 | 3ad2ant1 1021 |
. 2
|
| 149 | 71, 100, 145, 148 | mpjao3dan 1320 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-i2m1 8032 ax-0id 8035 ax-rnegex 8036 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-xadd 9897 |
| This theorem is referenced by: xltadd2 10001 xlt2add 10004 xrmaxaddlem 11604 |
| Copyright terms: Public domain | W3C validator |