Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xltadd1 | Unicode version |
Description: Extended real version of ltadd1 8348. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.) |
Ref | Expression |
---|---|
xltadd1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 525 | . . . 4 | |
2 | simpr 109 | . . . 4 | |
3 | simpll3 1033 | . . . 4 | |
4 | ltadd1 8348 | . . . . 5 | |
5 | simp1 992 | . . . . . . 7 | |
6 | simp3 994 | . . . . . . 7 | |
7 | 5, 6 | rexaddd 9811 | . . . . . 6 |
8 | simp2 993 | . . . . . . 7 | |
9 | 8, 6 | rexaddd 9811 | . . . . . 6 |
10 | 7, 9 | breq12d 4002 | . . . . 5 |
11 | 4, 10 | bitr4d 190 | . . . 4 |
12 | 1, 2, 3, 11 | syl3anc 1233 | . . 3 |
13 | ltpnf 9737 | . . . . . 6 | |
14 | 13 | ad2antlr 486 | . . . . 5 |
15 | breq2 3993 | . . . . . 6 | |
16 | 15 | adantl 275 | . . . . 5 |
17 | 14, 16 | mpbird 166 | . . . 4 |
18 | simplr 525 | . . . . . . 7 | |
19 | simpll3 1033 | . . . . . . 7 | |
20 | rexadd 9809 | . . . . . . . 8 | |
21 | readdcl 7900 | . . . . . . . 8 | |
22 | 20, 21 | eqeltrd 2247 | . . . . . . 7 |
23 | 18, 19, 22 | syl2anc 409 | . . . . . 6 |
24 | ltpnf 9737 | . . . . . 6 | |
25 | 23, 24 | syl 14 | . . . . 5 |
26 | oveq1 5860 | . . . . . . 7 | |
27 | 26 | adantl 275 | . . . . . 6 |
28 | rexr 7965 | . . . . . . . 8 | |
29 | renemnf 7968 | . . . . . . . 8 | |
30 | xaddpnf2 9804 | . . . . . . . 8 | |
31 | 28, 29, 30 | syl2anc 409 | . . . . . . 7 |
32 | 19, 31 | syl 14 | . . . . . 6 |
33 | 27, 32 | eqtrd 2203 | . . . . 5 |
34 | 25, 33 | breqtrrd 4017 | . . . 4 |
35 | 17, 34 | 2thd 174 | . . 3 |
36 | mnfle 9749 | . . . . . . . 8 | |
37 | 36 | 3ad2ant1 1013 | . . . . . . 7 |
38 | 37 | ad2antrr 485 | . . . . . 6 |
39 | mnfxr 7976 | . . . . . . 7 | |
40 | simpll1 1031 | . . . . . . 7 | |
41 | xrlenlt 7984 | . . . . . . 7 | |
42 | 39, 40, 41 | sylancr 412 | . . . . . 6 |
43 | 38, 42 | mpbid 146 | . . . . 5 |
44 | breq2 3993 | . . . . . 6 | |
45 | 44 | adantl 275 | . . . . 5 |
46 | 43, 45 | mtbird 668 | . . . 4 |
47 | 28 | 3ad2ant3 1015 | . . . . . . . . 9 |
48 | 47 | ad2antrr 485 | . . . . . . . 8 |
49 | xaddcl 9817 | . . . . . . . 8 | |
50 | 40, 48, 49 | syl2anc 409 | . . . . . . 7 |
51 | mnfle 9749 | . . . . . . 7 | |
52 | 50, 51 | syl 14 | . . . . . 6 |
53 | xrlenlt 7984 | . . . . . . 7 | |
54 | 39, 50, 53 | sylancr 412 | . . . . . 6 |
55 | 52, 54 | mpbid 146 | . . . . 5 |
56 | simpr 109 | . . . . . . . 8 | |
57 | 56 | oveq1d 5868 | . . . . . . 7 |
58 | renepnf 7967 | . . . . . . . . . 10 | |
59 | 58 | 3ad2ant3 1015 | . . . . . . . . 9 |
60 | 59 | ad2antrr 485 | . . . . . . . 8 |
61 | xaddmnf2 9806 | . . . . . . . 8 | |
62 | 48, 60, 61 | syl2anc 409 | . . . . . . 7 |
63 | 57, 62 | eqtrd 2203 | . . . . . 6 |
64 | 63 | breq2d 4001 | . . . . 5 |
65 | 55, 64 | mtbird 668 | . . . 4 |
66 | 46, 65 | 2falsed 697 | . . 3 |
67 | elxr 9733 | . . . . . 6 | |
68 | 67 | biimpi 119 | . . . . 5 |
69 | 68 | 3ad2ant2 1014 | . . . 4 |
70 | 69 | adantr 274 | . . 3 |
71 | 12, 35, 66, 70 | mpjao3dan 1302 | . 2 |
72 | simpl2 996 | . . . . . 6 | |
73 | pnfge 9746 | . . . . . 6 | |
74 | 72, 73 | syl 14 | . . . . 5 |
75 | pnfxr 7972 | . . . . . . 7 | |
76 | 75 | a1i 9 | . . . . . 6 |
77 | xrlenlt 7984 | . . . . . 6 | |
78 | 72, 76, 77 | syl2anc 409 | . . . . 5 |
79 | 74, 78 | mpbid 146 | . . . 4 |
80 | simpr 109 | . . . . 5 | |
81 | 80 | breq1d 3999 | . . . 4 |
82 | 79, 81 | mtbird 668 | . . 3 |
83 | 47 | adantr 274 | . . . . . . . 8 |
84 | xaddcl 9817 | . . . . . . . 8 | |
85 | 72, 83, 84 | syl2anc 409 | . . . . . . 7 |
86 | pnfge 9746 | . . . . . . 7 | |
87 | 85, 86 | syl 14 | . . . . . 6 |
88 | 29 | 3ad2ant3 1015 | . . . . . . . 8 |
89 | 88 | adantr 274 | . . . . . . 7 |
90 | 83, 89, 30 | syl2anc 409 | . . . . . 6 |
91 | 87, 90 | breqtrrd 4017 | . . . . 5 |
92 | xaddcl 9817 | . . . . . . 7 | |
93 | 75, 83, 92 | sylancr 412 | . . . . . 6 |
94 | xrlenlt 7984 | . . . . . 6 | |
95 | 85, 93, 94 | syl2anc 409 | . . . . 5 |
96 | 91, 95 | mpbid 146 | . . . 4 |
97 | 80 | oveq1d 5868 | . . . . 5 |
98 | 97 | breq1d 3999 | . . . 4 |
99 | 96, 98 | mtbird 668 | . . 3 |
100 | 82, 99 | 2falsed 697 | . 2 |
101 | simplr 525 | . . . . 5 | |
102 | mnflt 9740 | . . . . . 6 | |
103 | 102 | adantl 275 | . . . . 5 |
104 | 101, 103 | eqbrtrd 4011 | . . . 4 |
105 | 101 | oveq1d 5868 | . . . . . 6 |
106 | simpll3 1033 | . . . . . . . 8 | |
107 | 106, 28 | syl 14 | . . . . . . 7 |
108 | 106, 58 | syl 14 | . . . . . . 7 |
109 | 107, 108, 61 | syl2anc 409 | . . . . . 6 |
110 | 105, 109 | eqtrd 2203 | . . . . 5 |
111 | simpr 109 | . . . . . . 7 | |
112 | rexadd 9809 | . . . . . . . 8 | |
113 | readdcl 7900 | . . . . . . . 8 | |
114 | 112, 113 | eqeltrd 2247 | . . . . . . 7 |
115 | 111, 106, 114 | syl2anc 409 | . . . . . 6 |
116 | mnflt 9740 | . . . . . 6 | |
117 | 115, 116 | syl 14 | . . . . 5 |
118 | 110, 117 | eqbrtrd 4011 | . . . 4 |
119 | 104, 118 | 2thd 174 | . . 3 |
120 | simplr 525 | . . . . 5 | |
121 | simpr 109 | . . . . 5 | |
122 | 120, 121 | breq12d 4002 | . . . 4 |
123 | oveq1 5860 | . . . . . . 7 | |
124 | 47, 59, 61 | syl2anc 409 | . . . . . . 7 |
125 | 123, 124 | sylan9eqr 2225 | . . . . . 6 |
126 | 125 | adantr 274 | . . . . 5 |
127 | 26 | adantl 275 | . . . . . 6 |
128 | 47, 88, 30 | syl2anc 409 | . . . . . . 7 |
129 | 128 | ad2antrr 485 | . . . . . 6 |
130 | 127, 129 | eqtrd 2203 | . . . . 5 |
131 | 126, 130 | breq12d 4002 | . . . 4 |
132 | 122, 131 | bitr4d 190 | . . 3 |
133 | simplr 525 | . . . . 5 | |
134 | simpr 109 | . . . . 5 | |
135 | 133, 134 | breq12d 4002 | . . . 4 |
136 | 124 | ad2antrr 485 | . . . . . 6 |
137 | 123 | eqeq1d 2179 | . . . . . . 7 |
138 | 137 | ad2antlr 486 | . . . . . 6 |
139 | 136, 138 | mpbird 166 | . . . . 5 |
140 | 134 | oveq1d 5868 | . . . . . 6 |
141 | 140, 136 | eqtrd 2203 | . . . . 5 |
142 | 139, 141 | breq12d 4002 | . . . 4 |
143 | 135, 142 | bitr4d 190 | . . 3 |
144 | 69 | adantr 274 | . . 3 |
145 | 119, 132, 143, 144 | mpjao3dan 1302 | . 2 |
146 | elxr 9733 | . . . 4 | |
147 | 146 | biimpi 119 | . . 3 |
148 | 147 | 3ad2ant1 1013 | . 2 |
149 | 71, 100, 145, 148 | mpjao3dan 1302 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3o 972 w3a 973 wceq 1348 wcel 2141 wne 2340 class class class wbr 3989 (class class class)co 5853 cr 7773 caddc 7777 cpnf 7951 cmnf 7952 cxr 7953 clt 7954 cle 7955 cxad 9727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-xadd 9730 |
This theorem is referenced by: xltadd2 9834 xlt2add 9837 xrmaxaddlem 11223 |
Copyright terms: Public domain | W3C validator |