| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xltadd1 | Unicode version | ||
| Description: Extended real version of ltadd1 8537. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.) |
| Ref | Expression |
|---|---|
| xltadd1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 528 |
. . . 4
| |
| 2 | simpr 110 |
. . . 4
| |
| 3 | simpll3 1041 |
. . . 4
| |
| 4 | ltadd1 8537 |
. . . . 5
| |
| 5 | simp1 1000 |
. . . . . . 7
| |
| 6 | simp3 1002 |
. . . . . . 7
| |
| 7 | 5, 6 | rexaddd 10011 |
. . . . . 6
|
| 8 | simp2 1001 |
. . . . . . 7
| |
| 9 | 8, 6 | rexaddd 10011 |
. . . . . 6
|
| 10 | 7, 9 | breq12d 4072 |
. . . . 5
|
| 11 | 4, 10 | bitr4d 191 |
. . . 4
|
| 12 | 1, 2, 3, 11 | syl3anc 1250 |
. . 3
|
| 13 | ltpnf 9937 |
. . . . . 6
| |
| 14 | 13 | ad2antlr 489 |
. . . . 5
|
| 15 | breq2 4063 |
. . . . . 6
| |
| 16 | 15 | adantl 277 |
. . . . 5
|
| 17 | 14, 16 | mpbird 167 |
. . . 4
|
| 18 | simplr 528 |
. . . . . . 7
| |
| 19 | simpll3 1041 |
. . . . . . 7
| |
| 20 | rexadd 10009 |
. . . . . . . 8
| |
| 21 | readdcl 8086 |
. . . . . . . 8
| |
| 22 | 20, 21 | eqeltrd 2284 |
. . . . . . 7
|
| 23 | 18, 19, 22 | syl2anc 411 |
. . . . . 6
|
| 24 | ltpnf 9937 |
. . . . . 6
| |
| 25 | 23, 24 | syl 14 |
. . . . 5
|
| 26 | oveq1 5974 |
. . . . . . 7
| |
| 27 | 26 | adantl 277 |
. . . . . 6
|
| 28 | rexr 8153 |
. . . . . . . 8
| |
| 29 | renemnf 8156 |
. . . . . . . 8
| |
| 30 | xaddpnf2 10004 |
. . . . . . . 8
| |
| 31 | 28, 29, 30 | syl2anc 411 |
. . . . . . 7
|
| 32 | 19, 31 | syl 14 |
. . . . . 6
|
| 33 | 27, 32 | eqtrd 2240 |
. . . . 5
|
| 34 | 25, 33 | breqtrrd 4087 |
. . . 4
|
| 35 | 17, 34 | 2thd 175 |
. . 3
|
| 36 | mnfle 9949 |
. . . . . . . 8
| |
| 37 | 36 | 3ad2ant1 1021 |
. . . . . . 7
|
| 38 | 37 | ad2antrr 488 |
. . . . . 6
|
| 39 | mnfxr 8164 |
. . . . . . 7
| |
| 40 | simpll1 1039 |
. . . . . . 7
| |
| 41 | xrlenlt 8172 |
. . . . . . 7
| |
| 42 | 39, 40, 41 | sylancr 414 |
. . . . . 6
|
| 43 | 38, 42 | mpbid 147 |
. . . . 5
|
| 44 | breq2 4063 |
. . . . . 6
| |
| 45 | 44 | adantl 277 |
. . . . 5
|
| 46 | 43, 45 | mtbird 675 |
. . . 4
|
| 47 | 28 | 3ad2ant3 1023 |
. . . . . . . . 9
|
| 48 | 47 | ad2antrr 488 |
. . . . . . . 8
|
| 49 | xaddcl 10017 |
. . . . . . . 8
| |
| 50 | 40, 48, 49 | syl2anc 411 |
. . . . . . 7
|
| 51 | mnfle 9949 |
. . . . . . 7
| |
| 52 | 50, 51 | syl 14 |
. . . . . 6
|
| 53 | xrlenlt 8172 |
. . . . . . 7
| |
| 54 | 39, 50, 53 | sylancr 414 |
. . . . . 6
|
| 55 | 52, 54 | mpbid 147 |
. . . . 5
|
| 56 | simpr 110 |
. . . . . . . 8
| |
| 57 | 56 | oveq1d 5982 |
. . . . . . 7
|
| 58 | renepnf 8155 |
. . . . . . . . . 10
| |
| 59 | 58 | 3ad2ant3 1023 |
. . . . . . . . 9
|
| 60 | 59 | ad2antrr 488 |
. . . . . . . 8
|
| 61 | xaddmnf2 10006 |
. . . . . . . 8
| |
| 62 | 48, 60, 61 | syl2anc 411 |
. . . . . . 7
|
| 63 | 57, 62 | eqtrd 2240 |
. . . . . 6
|
| 64 | 63 | breq2d 4071 |
. . . . 5
|
| 65 | 55, 64 | mtbird 675 |
. . . 4
|
| 66 | 46, 65 | 2falsed 704 |
. . 3
|
| 67 | elxr 9933 |
. . . . . 6
| |
| 68 | 67 | biimpi 120 |
. . . . 5
|
| 69 | 68 | 3ad2ant2 1022 |
. . . 4
|
| 70 | 69 | adantr 276 |
. . 3
|
| 71 | 12, 35, 66, 70 | mpjao3dan 1320 |
. 2
|
| 72 | simpl2 1004 |
. . . . . 6
| |
| 73 | pnfge 9946 |
. . . . . 6
| |
| 74 | 72, 73 | syl 14 |
. . . . 5
|
| 75 | pnfxr 8160 |
. . . . . . 7
| |
| 76 | 75 | a1i 9 |
. . . . . 6
|
| 77 | xrlenlt 8172 |
. . . . . 6
| |
| 78 | 72, 76, 77 | syl2anc 411 |
. . . . 5
|
| 79 | 74, 78 | mpbid 147 |
. . . 4
|
| 80 | simpr 110 |
. . . . 5
| |
| 81 | 80 | breq1d 4069 |
. . . 4
|
| 82 | 79, 81 | mtbird 675 |
. . 3
|
| 83 | 47 | adantr 276 |
. . . . . . . 8
|
| 84 | xaddcl 10017 |
. . . . . . . 8
| |
| 85 | 72, 83, 84 | syl2anc 411 |
. . . . . . 7
|
| 86 | pnfge 9946 |
. . . . . . 7
| |
| 87 | 85, 86 | syl 14 |
. . . . . 6
|
| 88 | 29 | 3ad2ant3 1023 |
. . . . . . . 8
|
| 89 | 88 | adantr 276 |
. . . . . . 7
|
| 90 | 83, 89, 30 | syl2anc 411 |
. . . . . 6
|
| 91 | 87, 90 | breqtrrd 4087 |
. . . . 5
|
| 92 | xaddcl 10017 |
. . . . . . 7
| |
| 93 | 75, 83, 92 | sylancr 414 |
. . . . . 6
|
| 94 | xrlenlt 8172 |
. . . . . 6
| |
| 95 | 85, 93, 94 | syl2anc 411 |
. . . . 5
|
| 96 | 91, 95 | mpbid 147 |
. . . 4
|
| 97 | 80 | oveq1d 5982 |
. . . . 5
|
| 98 | 97 | breq1d 4069 |
. . . 4
|
| 99 | 96, 98 | mtbird 675 |
. . 3
|
| 100 | 82, 99 | 2falsed 704 |
. 2
|
| 101 | simplr 528 |
. . . . 5
| |
| 102 | mnflt 9940 |
. . . . . 6
| |
| 103 | 102 | adantl 277 |
. . . . 5
|
| 104 | 101, 103 | eqbrtrd 4081 |
. . . 4
|
| 105 | 101 | oveq1d 5982 |
. . . . . 6
|
| 106 | simpll3 1041 |
. . . . . . . 8
| |
| 107 | 106, 28 | syl 14 |
. . . . . . 7
|
| 108 | 106, 58 | syl 14 |
. . . . . . 7
|
| 109 | 107, 108, 61 | syl2anc 411 |
. . . . . 6
|
| 110 | 105, 109 | eqtrd 2240 |
. . . . 5
|
| 111 | simpr 110 |
. . . . . . 7
| |
| 112 | rexadd 10009 |
. . . . . . . 8
| |
| 113 | readdcl 8086 |
. . . . . . . 8
| |
| 114 | 112, 113 | eqeltrd 2284 |
. . . . . . 7
|
| 115 | 111, 106, 114 | syl2anc 411 |
. . . . . 6
|
| 116 | mnflt 9940 |
. . . . . 6
| |
| 117 | 115, 116 | syl 14 |
. . . . 5
|
| 118 | 110, 117 | eqbrtrd 4081 |
. . . 4
|
| 119 | 104, 118 | 2thd 175 |
. . 3
|
| 120 | simplr 528 |
. . . . 5
| |
| 121 | simpr 110 |
. . . . 5
| |
| 122 | 120, 121 | breq12d 4072 |
. . . 4
|
| 123 | oveq1 5974 |
. . . . . . 7
| |
| 124 | 47, 59, 61 | syl2anc 411 |
. . . . . . 7
|
| 125 | 123, 124 | sylan9eqr 2262 |
. . . . . 6
|
| 126 | 125 | adantr 276 |
. . . . 5
|
| 127 | 26 | adantl 277 |
. . . . . 6
|
| 128 | 47, 88, 30 | syl2anc 411 |
. . . . . . 7
|
| 129 | 128 | ad2antrr 488 |
. . . . . 6
|
| 130 | 127, 129 | eqtrd 2240 |
. . . . 5
|
| 131 | 126, 130 | breq12d 4072 |
. . . 4
|
| 132 | 122, 131 | bitr4d 191 |
. . 3
|
| 133 | simplr 528 |
. . . . 5
| |
| 134 | simpr 110 |
. . . . 5
| |
| 135 | 133, 134 | breq12d 4072 |
. . . 4
|
| 136 | 124 | ad2antrr 488 |
. . . . . 6
|
| 137 | 123 | eqeq1d 2216 |
. . . . . . 7
|
| 138 | 137 | ad2antlr 489 |
. . . . . 6
|
| 139 | 136, 138 | mpbird 167 |
. . . . 5
|
| 140 | 134 | oveq1d 5982 |
. . . . . 6
|
| 141 | 140, 136 | eqtrd 2240 |
. . . . 5
|
| 142 | 139, 141 | breq12d 4072 |
. . . 4
|
| 143 | 135, 142 | bitr4d 191 |
. . 3
|
| 144 | 69 | adantr 276 |
. . 3
|
| 145 | 119, 132, 143, 144 | mpjao3dan 1320 |
. 2
|
| 146 | elxr 9933 |
. . . 4
| |
| 147 | 146 | biimpi 120 |
. . 3
|
| 148 | 147 | 3ad2ant1 1021 |
. 2
|
| 149 | 71, 100, 145, 148 | mpjao3dan 1320 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-xadd 9930 |
| This theorem is referenced by: xltadd2 10034 xlt2add 10037 xrmaxaddlem 11686 |
| Copyright terms: Public domain | W3C validator |