ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xltadd1 Unicode version

Theorem xltadd1 9863
Description: Extended real version of ltadd1 8376. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.)
Assertion
Ref Expression
xltadd1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  <  B  <->  ( A +e C )  <  ( B +e C ) ) )

Proof of Theorem xltadd1
StepHypRef Expression
1 simplr 528 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  e.  RR )  ->  A  e.  RR )
2 simpr 110 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  e.  RR )  ->  B  e.  RR )
3 simpll3 1038 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  e.  RR )  ->  C  e.  RR )
4 ltadd1 8376 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C )
) )
5 simp1 997 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
6 simp3 999 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
75, 6rexaddd 9841 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A +e C )  =  ( A  +  C ) )
8 simp2 998 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
98, 6rexaddd 9841 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B +e C )  =  ( B  +  C ) )
107, 9breq12d 4013 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A +e
C )  <  ( B +e C )  <-> 
( A  +  C
)  <  ( B  +  C ) ) )
114, 10bitr4d 191 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  ( A +e C )  <  ( B +e C ) ) )
121, 2, 3, 11syl3anc 1238 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  e.  RR )  ->  ( A  < 
B  <->  ( A +e C )  < 
( B +e
C ) ) )
13 ltpnf 9767 . . . . . 6  |-  ( A  e.  RR  ->  A  < +oo )
1413ad2antlr 489 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  A  < +oo )
15 breq2 4004 . . . . . 6  |-  ( B  = +oo  ->  ( A  <  B  <->  A  < +oo ) )
1615adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( A  < 
B  <->  A  < +oo )
)
1714, 16mpbird 167 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  A  <  B
)
18 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  A  e.  RR )
19 simpll3 1038 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  C  e.  RR )
20 rexadd 9839 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A +e
C )  =  ( A  +  C ) )
21 readdcl 7928 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  +  C
)  e.  RR )
2220, 21eqeltrd 2254 . . . . . . 7  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A +e
C )  e.  RR )
2318, 19, 22syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( A +e C )  e.  RR )
24 ltpnf 9767 . . . . . 6  |-  ( ( A +e C )  e.  RR  ->  ( A +e C )  < +oo )
2523, 24syl 14 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( A +e C )  < +oo )
26 oveq1 5876 . . . . . . 7  |-  ( B  = +oo  ->  ( B +e C )  =  ( +oo +e C ) )
2726adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( B +e C )  =  ( +oo +e
C ) )
28 rexr 7993 . . . . . . . 8  |-  ( C  e.  RR  ->  C  e.  RR* )
29 renemnf 7996 . . . . . . . 8  |-  ( C  e.  RR  ->  C  =/= -oo )
30 xaddpnf2 9834 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( +oo +e C )  = +oo )
3128, 29, 30syl2anc 411 . . . . . . 7  |-  ( C  e.  RR  ->  ( +oo +e C )  = +oo )
3219, 31syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( +oo +e C )  = +oo )
3327, 32eqtrd 2210 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( B +e C )  = +oo )
3425, 33breqtrrd 4028 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( A +e C )  < 
( B +e
C ) )
3517, 342thd 175 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( A  < 
B  <->  ( A +e C )  < 
( B +e
C ) ) )
36 mnfle 9779 . . . . . . . 8  |-  ( A  e.  RR*  -> -oo  <_  A )
37363ad2ant1 1018 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  -> -oo  <_  A )
3837ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  -> -oo  <_  A )
39 mnfxr 8004 . . . . . . 7  |- -oo  e.  RR*
40 simpll1 1036 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  A  e.  RR* )
41 xrlenlt 8012 . . . . . . 7  |-  ( ( -oo  e.  RR*  /\  A  e.  RR* )  ->  ( -oo  <_  A  <->  -.  A  < -oo ) )
4239, 40, 41sylancr 414 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( -oo  <_  A  <->  -.  A  < -oo )
)
4338, 42mpbid 147 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  -.  A  < -oo )
44 breq2 4004 . . . . . 6  |-  ( B  = -oo  ->  ( A  <  B  <->  A  < -oo ) )
4544adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( A  < 
B  <->  A  < -oo )
)
4643, 45mtbird 673 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  -.  A  <  B )
47283ad2ant3 1020 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  C  e.  RR* )
4847ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  C  e.  RR* )
49 xaddcl 9847 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A +e C )  e.  RR* )
5040, 48, 49syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( A +e C )  e. 
RR* )
51 mnfle 9779 . . . . . . 7  |-  ( ( A +e C )  e.  RR*  -> -oo 
<_  ( A +e
C ) )
5250, 51syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  -> -oo  <_  ( A +e C ) )
53 xrlenlt 8012 . . . . . . 7  |-  ( ( -oo  e.  RR*  /\  ( A +e C )  e.  RR* )  ->  ( -oo  <_  ( A +e C )  <->  -.  ( A +e C )  < -oo ) )
5439, 50, 53sylancr 414 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( -oo  <_  ( A +e C )  <->  -.  ( A +e C )  < -oo ) )
5552, 54mpbid 147 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  -.  ( A +e C )  < -oo )
56 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  B  = -oo )
5756oveq1d 5884 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( B +e C )  =  ( -oo +e
C ) )
58 renepnf 7995 . . . . . . . . . 10  |-  ( C  e.  RR  ->  C  =/= +oo )
59583ad2ant3 1020 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  C  =/= +oo )
6059ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  C  =/= +oo )
61 xaddmnf2 9836 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  C  =/= +oo )  ->  ( -oo +e C )  = -oo )
6248, 60, 61syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( -oo +e C )  = -oo )
6357, 62eqtrd 2210 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( B +e C )  = -oo )
6463breq2d 4012 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( ( A +e C )  <  ( B +e C )  <->  ( A +e C )  < -oo ) )
6555, 64mtbird 673 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  -.  ( A +e C )  <  ( B +e C ) )
6646, 652falsed 702 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( A  < 
B  <->  ( A +e C )  < 
( B +e
C ) ) )
67 elxr 9763 . . . . . 6  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
6867biimpi 120 . . . . 5  |-  ( B  e.  RR*  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
69683ad2ant2 1019 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
7069adantr 276 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  e.  RR )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
7112, 35, 66, 70mpjao3dan 1307 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  e.  RR )  ->  ( A  <  B  <->  ( A +e C )  <  ( B +e C ) ) )
72 simpl2 1001 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  B  e.  RR* )
73 pnfge 9776 . . . . . 6  |-  ( B  e.  RR*  ->  B  <_ +oo )
7472, 73syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  B  <_ +oo )
75 pnfxr 8000 . . . . . . 7  |- +oo  e.  RR*
7675a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  -> +oo  e.  RR* )
77 xrlenlt 8012 . . . . . 6  |-  ( ( B  e.  RR*  /\ +oo  e.  RR* )  ->  ( B  <_ +oo  <->  -. +oo  <  B
) )
7872, 76, 77syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( B  <_ +oo  <->  -. +oo  <  B
) )
7974, 78mpbid 147 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  -. +oo 
<  B )
80 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
8180breq1d 4010 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( A  <  B  <-> +oo  <  B
) )
8279, 81mtbird 673 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  -.  A  <  B )
8347adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  C  e.  RR* )
84 xaddcl 9847 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
8572, 83, 84syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( B +e C )  e.  RR* )
86 pnfge 9776 . . . . . . 7  |-  ( ( B +e C )  e.  RR*  ->  ( B +e C )  <_ +oo )
8785, 86syl 14 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( B +e C )  <_ +oo )
88293ad2ant3 1020 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  C  =/= -oo )
8988adantr 276 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  C  =/= -oo )
9083, 89, 30syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( +oo +e C )  = +oo )
9187, 90breqtrrd 4028 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( B +e C )  <_  ( +oo +e C ) )
92 xaddcl 9847 . . . . . . 7  |-  ( ( +oo  e.  RR*  /\  C  e.  RR* )  ->  ( +oo +e C )  e.  RR* )
9375, 83, 92sylancr 414 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( +oo +e C )  e.  RR* )
94 xrlenlt 8012 . . . . . 6  |-  ( ( ( B +e
C )  e.  RR*  /\  ( +oo +e
C )  e.  RR* )  ->  ( ( B +e C )  <_  ( +oo +e C )  <->  -.  ( +oo +e C )  <  ( B +e C ) ) )
9585, 93, 94syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  (
( B +e
C )  <_  ( +oo +e C )  <->  -.  ( +oo +e
C )  <  ( B +e C ) ) )
9691, 95mpbid 147 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  -.  ( +oo +e C )  <  ( B +e C ) )
9780oveq1d 5884 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( A +e C )  =  ( +oo +e C ) )
9897breq1d 4010 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  (
( A +e
C )  <  ( B +e C )  <-> 
( +oo +e C )  <  ( B +e C ) ) )
9996, 98mtbird 673 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  -.  ( A +e C )  <  ( B +e C ) )
10082, 992falsed 702 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( A  <  B  <->  ( A +e C )  <  ( B +e C ) ) )
101 simplr 528 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  A  = -oo )
102 mnflt 9770 . . . . . 6  |-  ( B  e.  RR  -> -oo  <  B )
103102adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  -> -oo  <  B )
104101, 103eqbrtrd 4022 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  A  <  B
)
105101oveq1d 5884 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  ( A +e C )  =  ( -oo +e
C ) )
106 simpll3 1038 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  C  e.  RR )
107106, 28syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  C  e.  RR* )
108106, 58syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  C  =/= +oo )
109107, 108, 61syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  ( -oo +e C )  = -oo )
110105, 109eqtrd 2210 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  ( A +e C )  = -oo )
111 simpr 110 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  B  e.  RR )
112 rexadd 9839 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B +e
C )  =  ( B  +  C ) )
113 readdcl 7928 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
114112, 113eqeltrd 2254 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B +e
C )  e.  RR )
115111, 106, 114syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  ( B +e C )  e.  RR )
116 mnflt 9770 . . . . . 6  |-  ( ( B +e C )  e.  RR  -> -oo 
<  ( B +e C ) )
117115, 116syl 14 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  -> -oo  <  ( B +e C ) )
118110, 117eqbrtrd 4022 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  ( A +e C )  < 
( B +e
C ) )
119104, 1182thd 175 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  ( A  < 
B  <->  ( A +e C )  < 
( B +e
C ) ) )
120 simplr 528 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  A  = -oo )
121 simpr 110 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  B  = +oo )
122120, 121breq12d 4013 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  ( A  < 
B  <-> -oo  < +oo )
)
123 oveq1 5876 . . . . . . 7  |-  ( A  = -oo  ->  ( A +e C )  =  ( -oo +e C ) )
12447, 59, 61syl2anc 411 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( -oo +e C )  = -oo )
125123, 124sylan9eqr 2232 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = -oo )  ->  ( A +e C )  = -oo )
126125adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  ( A +e C )  = -oo )
12726adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  ( B +e C )  =  ( +oo +e
C ) )
12847, 88, 30syl2anc 411 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( +oo +e C )  = +oo )
129128ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  ( +oo +e C )  = +oo )
130127, 129eqtrd 2210 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  ( B +e C )  = +oo )
131126, 130breq12d 4013 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  ( ( A +e C )  <  ( B +e C )  <-> -oo  < +oo ) )
132122, 131bitr4d 191 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  ( A  < 
B  <->  ( A +e C )  < 
( B +e
C ) ) )
133 simplr 528 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  A  = -oo )
134 simpr 110 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  B  = -oo )
135133, 134breq12d 4013 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( A  < 
B  <-> -oo  < -oo )
)
136124ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( -oo +e C )  = -oo )
137123eqeq1d 2186 . . . . . . 7  |-  ( A  = -oo  ->  (
( A +e
C )  = -oo  <->  ( -oo +e C )  = -oo ) )
138137ad2antlr 489 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( ( A +e C )  = -oo  <->  ( -oo +e C )  = -oo ) )
139136, 138mpbird 167 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( A +e C )  = -oo )
140134oveq1d 5884 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( B +e C )  =  ( -oo +e
C ) )
141140, 136eqtrd 2210 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( B +e C )  = -oo )
142139, 141breq12d 4013 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( ( A +e C )  <  ( B +e C )  <-> -oo  < -oo ) )
143135, 142bitr4d 191 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( A  < 
B  <->  ( A +e C )  < 
( B +e
C ) ) )
14469adantr 276 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = -oo )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
145119, 132, 143, 144mpjao3dan 1307 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = -oo )  ->  ( A  <  B  <->  ( A +e C )  <  ( B +e C ) ) )
146 elxr 9763 . . . 4  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
147146biimpi 120 . . 3  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1481473ad2ant1 1018 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
14971, 100, 145, 148mpjao3dan 1307 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  <  B  <->  ( A +e C )  <  ( B +e C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 977    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4000  (class class class)co 5869   RRcr 7801    + caddc 7805   +oocpnf 7979   -oocmnf 7980   RR*cxr 7981    < clt 7982    <_ cle 7983   +ecxad 9757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-i2m1 7907  ax-0id 7910  ax-rnegex 7911  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-xadd 9760
This theorem is referenced by:  xltadd2  9864  xlt2add  9867  xrmaxaddlem  11252
  Copyright terms: Public domain W3C validator