Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xltadd1 | Unicode version |
Description: Extended real version of ltadd1 8327. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.) |
Ref | Expression |
---|---|
xltadd1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 520 | . . . 4 | |
2 | simpr 109 | . . . 4 | |
3 | simpll3 1028 | . . . 4 | |
4 | ltadd1 8327 | . . . . 5 | |
5 | simp1 987 | . . . . . . 7 | |
6 | simp3 989 | . . . . . . 7 | |
7 | 5, 6 | rexaddd 9790 | . . . . . 6 |
8 | simp2 988 | . . . . . . 7 | |
9 | 8, 6 | rexaddd 9790 | . . . . . 6 |
10 | 7, 9 | breq12d 3995 | . . . . 5 |
11 | 4, 10 | bitr4d 190 | . . . 4 |
12 | 1, 2, 3, 11 | syl3anc 1228 | . . 3 |
13 | ltpnf 9716 | . . . . . 6 | |
14 | 13 | ad2antlr 481 | . . . . 5 |
15 | breq2 3986 | . . . . . 6 | |
16 | 15 | adantl 275 | . . . . 5 |
17 | 14, 16 | mpbird 166 | . . . 4 |
18 | simplr 520 | . . . . . . 7 | |
19 | simpll3 1028 | . . . . . . 7 | |
20 | rexadd 9788 | . . . . . . . 8 | |
21 | readdcl 7879 | . . . . . . . 8 | |
22 | 20, 21 | eqeltrd 2243 | . . . . . . 7 |
23 | 18, 19, 22 | syl2anc 409 | . . . . . 6 |
24 | ltpnf 9716 | . . . . . 6 | |
25 | 23, 24 | syl 14 | . . . . 5 |
26 | oveq1 5849 | . . . . . . 7 | |
27 | 26 | adantl 275 | . . . . . 6 |
28 | rexr 7944 | . . . . . . . 8 | |
29 | renemnf 7947 | . . . . . . . 8 | |
30 | xaddpnf2 9783 | . . . . . . . 8 | |
31 | 28, 29, 30 | syl2anc 409 | . . . . . . 7 |
32 | 19, 31 | syl 14 | . . . . . 6 |
33 | 27, 32 | eqtrd 2198 | . . . . 5 |
34 | 25, 33 | breqtrrd 4010 | . . . 4 |
35 | 17, 34 | 2thd 174 | . . 3 |
36 | mnfle 9728 | . . . . . . . 8 | |
37 | 36 | 3ad2ant1 1008 | . . . . . . 7 |
38 | 37 | ad2antrr 480 | . . . . . 6 |
39 | mnfxr 7955 | . . . . . . 7 | |
40 | simpll1 1026 | . . . . . . 7 | |
41 | xrlenlt 7963 | . . . . . . 7 | |
42 | 39, 40, 41 | sylancr 411 | . . . . . 6 |
43 | 38, 42 | mpbid 146 | . . . . 5 |
44 | breq2 3986 | . . . . . 6 | |
45 | 44 | adantl 275 | . . . . 5 |
46 | 43, 45 | mtbird 663 | . . . 4 |
47 | 28 | 3ad2ant3 1010 | . . . . . . . . 9 |
48 | 47 | ad2antrr 480 | . . . . . . . 8 |
49 | xaddcl 9796 | . . . . . . . 8 | |
50 | 40, 48, 49 | syl2anc 409 | . . . . . . 7 |
51 | mnfle 9728 | . . . . . . 7 | |
52 | 50, 51 | syl 14 | . . . . . 6 |
53 | xrlenlt 7963 | . . . . . . 7 | |
54 | 39, 50, 53 | sylancr 411 | . . . . . 6 |
55 | 52, 54 | mpbid 146 | . . . . 5 |
56 | simpr 109 | . . . . . . . 8 | |
57 | 56 | oveq1d 5857 | . . . . . . 7 |
58 | renepnf 7946 | . . . . . . . . . 10 | |
59 | 58 | 3ad2ant3 1010 | . . . . . . . . 9 |
60 | 59 | ad2antrr 480 | . . . . . . . 8 |
61 | xaddmnf2 9785 | . . . . . . . 8 | |
62 | 48, 60, 61 | syl2anc 409 | . . . . . . 7 |
63 | 57, 62 | eqtrd 2198 | . . . . . 6 |
64 | 63 | breq2d 3994 | . . . . 5 |
65 | 55, 64 | mtbird 663 | . . . 4 |
66 | 46, 65 | 2falsed 692 | . . 3 |
67 | elxr 9712 | . . . . . 6 | |
68 | 67 | biimpi 119 | . . . . 5 |
69 | 68 | 3ad2ant2 1009 | . . . 4 |
70 | 69 | adantr 274 | . . 3 |
71 | 12, 35, 66, 70 | mpjao3dan 1297 | . 2 |
72 | simpl2 991 | . . . . . 6 | |
73 | pnfge 9725 | . . . . . 6 | |
74 | 72, 73 | syl 14 | . . . . 5 |
75 | pnfxr 7951 | . . . . . . 7 | |
76 | 75 | a1i 9 | . . . . . 6 |
77 | xrlenlt 7963 | . . . . . 6 | |
78 | 72, 76, 77 | syl2anc 409 | . . . . 5 |
79 | 74, 78 | mpbid 146 | . . . 4 |
80 | simpr 109 | . . . . 5 | |
81 | 80 | breq1d 3992 | . . . 4 |
82 | 79, 81 | mtbird 663 | . . 3 |
83 | 47 | adantr 274 | . . . . . . . 8 |
84 | xaddcl 9796 | . . . . . . . 8 | |
85 | 72, 83, 84 | syl2anc 409 | . . . . . . 7 |
86 | pnfge 9725 | . . . . . . 7 | |
87 | 85, 86 | syl 14 | . . . . . 6 |
88 | 29 | 3ad2ant3 1010 | . . . . . . . 8 |
89 | 88 | adantr 274 | . . . . . . 7 |
90 | 83, 89, 30 | syl2anc 409 | . . . . . 6 |
91 | 87, 90 | breqtrrd 4010 | . . . . 5 |
92 | xaddcl 9796 | . . . . . . 7 | |
93 | 75, 83, 92 | sylancr 411 | . . . . . 6 |
94 | xrlenlt 7963 | . . . . . 6 | |
95 | 85, 93, 94 | syl2anc 409 | . . . . 5 |
96 | 91, 95 | mpbid 146 | . . . 4 |
97 | 80 | oveq1d 5857 | . . . . 5 |
98 | 97 | breq1d 3992 | . . . 4 |
99 | 96, 98 | mtbird 663 | . . 3 |
100 | 82, 99 | 2falsed 692 | . 2 |
101 | simplr 520 | . . . . 5 | |
102 | mnflt 9719 | . . . . . 6 | |
103 | 102 | adantl 275 | . . . . 5 |
104 | 101, 103 | eqbrtrd 4004 | . . . 4 |
105 | 101 | oveq1d 5857 | . . . . . 6 |
106 | simpll3 1028 | . . . . . . . 8 | |
107 | 106, 28 | syl 14 | . . . . . . 7 |
108 | 106, 58 | syl 14 | . . . . . . 7 |
109 | 107, 108, 61 | syl2anc 409 | . . . . . 6 |
110 | 105, 109 | eqtrd 2198 | . . . . 5 |
111 | simpr 109 | . . . . . . 7 | |
112 | rexadd 9788 | . . . . . . . 8 | |
113 | readdcl 7879 | . . . . . . . 8 | |
114 | 112, 113 | eqeltrd 2243 | . . . . . . 7 |
115 | 111, 106, 114 | syl2anc 409 | . . . . . 6 |
116 | mnflt 9719 | . . . . . 6 | |
117 | 115, 116 | syl 14 | . . . . 5 |
118 | 110, 117 | eqbrtrd 4004 | . . . 4 |
119 | 104, 118 | 2thd 174 | . . 3 |
120 | simplr 520 | . . . . 5 | |
121 | simpr 109 | . . . . 5 | |
122 | 120, 121 | breq12d 3995 | . . . 4 |
123 | oveq1 5849 | . . . . . . 7 | |
124 | 47, 59, 61 | syl2anc 409 | . . . . . . 7 |
125 | 123, 124 | sylan9eqr 2221 | . . . . . 6 |
126 | 125 | adantr 274 | . . . . 5 |
127 | 26 | adantl 275 | . . . . . 6 |
128 | 47, 88, 30 | syl2anc 409 | . . . . . . 7 |
129 | 128 | ad2antrr 480 | . . . . . 6 |
130 | 127, 129 | eqtrd 2198 | . . . . 5 |
131 | 126, 130 | breq12d 3995 | . . . 4 |
132 | 122, 131 | bitr4d 190 | . . 3 |
133 | simplr 520 | . . . . 5 | |
134 | simpr 109 | . . . . 5 | |
135 | 133, 134 | breq12d 3995 | . . . 4 |
136 | 124 | ad2antrr 480 | . . . . . 6 |
137 | 123 | eqeq1d 2174 | . . . . . . 7 |
138 | 137 | ad2antlr 481 | . . . . . 6 |
139 | 136, 138 | mpbird 166 | . . . . 5 |
140 | 134 | oveq1d 5857 | . . . . . 6 |
141 | 140, 136 | eqtrd 2198 | . . . . 5 |
142 | 139, 141 | breq12d 3995 | . . . 4 |
143 | 135, 142 | bitr4d 190 | . . 3 |
144 | 69 | adantr 274 | . . 3 |
145 | 119, 132, 143, 144 | mpjao3dan 1297 | . 2 |
146 | elxr 9712 | . . . 4 | |
147 | 146 | biimpi 119 | . . 3 |
148 | 147 | 3ad2ant1 1008 | . 2 |
149 | 71, 100, 145, 148 | mpjao3dan 1297 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3o 967 w3a 968 wceq 1343 wcel 2136 wne 2336 class class class wbr 3982 (class class class)co 5842 cr 7752 caddc 7756 cpnf 7930 cmnf 7931 cxr 7932 clt 7933 cle 7934 cxad 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-xadd 9709 |
This theorem is referenced by: xltadd2 9813 xlt2add 9816 xrmaxaddlem 11201 |
Copyright terms: Public domain | W3C validator |