ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xltadd1 Unicode version

Theorem xltadd1 9812
Description: Extended real version of ltadd1 8327. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.)
Assertion
Ref Expression
xltadd1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  <  B  <->  ( A +e C )  <  ( B +e C ) ) )

Proof of Theorem xltadd1
StepHypRef Expression
1 simplr 520 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  e.  RR )  ->  A  e.  RR )
2 simpr 109 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  e.  RR )  ->  B  e.  RR )
3 simpll3 1028 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  e.  RR )  ->  C  e.  RR )
4 ltadd1 8327 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C )
) )
5 simp1 987 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
6 simp3 989 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
75, 6rexaddd 9790 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A +e C )  =  ( A  +  C ) )
8 simp2 988 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
98, 6rexaddd 9790 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B +e C )  =  ( B  +  C ) )
107, 9breq12d 3995 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A +e
C )  <  ( B +e C )  <-> 
( A  +  C
)  <  ( B  +  C ) ) )
114, 10bitr4d 190 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  ( A +e C )  <  ( B +e C ) ) )
121, 2, 3, 11syl3anc 1228 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  e.  RR )  ->  ( A  < 
B  <->  ( A +e C )  < 
( B +e
C ) ) )
13 ltpnf 9716 . . . . . 6  |-  ( A  e.  RR  ->  A  < +oo )
1413ad2antlr 481 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  A  < +oo )
15 breq2 3986 . . . . . 6  |-  ( B  = +oo  ->  ( A  <  B  <->  A  < +oo ) )
1615adantl 275 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( A  < 
B  <->  A  < +oo )
)
1714, 16mpbird 166 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  A  <  B
)
18 simplr 520 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  A  e.  RR )
19 simpll3 1028 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  C  e.  RR )
20 rexadd 9788 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A +e
C )  =  ( A  +  C ) )
21 readdcl 7879 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  +  C
)  e.  RR )
2220, 21eqeltrd 2243 . . . . . . 7  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A +e
C )  e.  RR )
2318, 19, 22syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( A +e C )  e.  RR )
24 ltpnf 9716 . . . . . 6  |-  ( ( A +e C )  e.  RR  ->  ( A +e C )  < +oo )
2523, 24syl 14 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( A +e C )  < +oo )
26 oveq1 5849 . . . . . . 7  |-  ( B  = +oo  ->  ( B +e C )  =  ( +oo +e C ) )
2726adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( B +e C )  =  ( +oo +e
C ) )
28 rexr 7944 . . . . . . . 8  |-  ( C  e.  RR  ->  C  e.  RR* )
29 renemnf 7947 . . . . . . . 8  |-  ( C  e.  RR  ->  C  =/= -oo )
30 xaddpnf2 9783 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( +oo +e C )  = +oo )
3128, 29, 30syl2anc 409 . . . . . . 7  |-  ( C  e.  RR  ->  ( +oo +e C )  = +oo )
3219, 31syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( +oo +e C )  = +oo )
3327, 32eqtrd 2198 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( B +e C )  = +oo )
3425, 33breqtrrd 4010 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( A +e C )  < 
( B +e
C ) )
3517, 342thd 174 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( A  < 
B  <->  ( A +e C )  < 
( B +e
C ) ) )
36 mnfle 9728 . . . . . . . 8  |-  ( A  e.  RR*  -> -oo  <_  A )
37363ad2ant1 1008 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  -> -oo  <_  A )
3837ad2antrr 480 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  -> -oo  <_  A )
39 mnfxr 7955 . . . . . . 7  |- -oo  e.  RR*
40 simpll1 1026 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  A  e.  RR* )
41 xrlenlt 7963 . . . . . . 7  |-  ( ( -oo  e.  RR*  /\  A  e.  RR* )  ->  ( -oo  <_  A  <->  -.  A  < -oo ) )
4239, 40, 41sylancr 411 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( -oo  <_  A  <->  -.  A  < -oo )
)
4338, 42mpbid 146 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  -.  A  < -oo )
44 breq2 3986 . . . . . 6  |-  ( B  = -oo  ->  ( A  <  B  <->  A  < -oo ) )
4544adantl 275 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( A  < 
B  <->  A  < -oo )
)
4643, 45mtbird 663 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  -.  A  <  B )
47283ad2ant3 1010 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  C  e.  RR* )
4847ad2antrr 480 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  C  e.  RR* )
49 xaddcl 9796 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A +e C )  e.  RR* )
5040, 48, 49syl2anc 409 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( A +e C )  e. 
RR* )
51 mnfle 9728 . . . . . . 7  |-  ( ( A +e C )  e.  RR*  -> -oo 
<_  ( A +e
C ) )
5250, 51syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  -> -oo  <_  ( A +e C ) )
53 xrlenlt 7963 . . . . . . 7  |-  ( ( -oo  e.  RR*  /\  ( A +e C )  e.  RR* )  ->  ( -oo  <_  ( A +e C )  <->  -.  ( A +e C )  < -oo ) )
5439, 50, 53sylancr 411 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( -oo  <_  ( A +e C )  <->  -.  ( A +e C )  < -oo ) )
5552, 54mpbid 146 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  -.  ( A +e C )  < -oo )
56 simpr 109 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  B  = -oo )
5756oveq1d 5857 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( B +e C )  =  ( -oo +e
C ) )
58 renepnf 7946 . . . . . . . . . 10  |-  ( C  e.  RR  ->  C  =/= +oo )
59583ad2ant3 1010 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  C  =/= +oo )
6059ad2antrr 480 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  C  =/= +oo )
61 xaddmnf2 9785 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  C  =/= +oo )  ->  ( -oo +e C )  = -oo )
6248, 60, 61syl2anc 409 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( -oo +e C )  = -oo )
6357, 62eqtrd 2198 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( B +e C )  = -oo )
6463breq2d 3994 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( ( A +e C )  <  ( B +e C )  <->  ( A +e C )  < -oo ) )
6555, 64mtbird 663 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  -.  ( A +e C )  <  ( B +e C ) )
6646, 652falsed 692 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  e.  RR )  /\  B  = -oo )  ->  ( A  < 
B  <->  ( A +e C )  < 
( B +e
C ) ) )
67 elxr 9712 . . . . . 6  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
6867biimpi 119 . . . . 5  |-  ( B  e.  RR*  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
69683ad2ant2 1009 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
7069adantr 274 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  e.  RR )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
7112, 35, 66, 70mpjao3dan 1297 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  e.  RR )  ->  ( A  <  B  <->  ( A +e C )  <  ( B +e C ) ) )
72 simpl2 991 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  B  e.  RR* )
73 pnfge 9725 . . . . . 6  |-  ( B  e.  RR*  ->  B  <_ +oo )
7472, 73syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  B  <_ +oo )
75 pnfxr 7951 . . . . . . 7  |- +oo  e.  RR*
7675a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  -> +oo  e.  RR* )
77 xrlenlt 7963 . . . . . 6  |-  ( ( B  e.  RR*  /\ +oo  e.  RR* )  ->  ( B  <_ +oo  <->  -. +oo  <  B
) )
7872, 76, 77syl2anc 409 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( B  <_ +oo  <->  -. +oo  <  B
) )
7974, 78mpbid 146 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  -. +oo 
<  B )
80 simpr 109 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
8180breq1d 3992 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( A  <  B  <-> +oo  <  B
) )
8279, 81mtbird 663 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  -.  A  <  B )
8347adantr 274 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  C  e.  RR* )
84 xaddcl 9796 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
8572, 83, 84syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( B +e C )  e.  RR* )
86 pnfge 9725 . . . . . . 7  |-  ( ( B +e C )  e.  RR*  ->  ( B +e C )  <_ +oo )
8785, 86syl 14 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( B +e C )  <_ +oo )
88293ad2ant3 1010 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  C  =/= -oo )
8988adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  C  =/= -oo )
9083, 89, 30syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( +oo +e C )  = +oo )
9187, 90breqtrrd 4010 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( B +e C )  <_  ( +oo +e C ) )
92 xaddcl 9796 . . . . . . 7  |-  ( ( +oo  e.  RR*  /\  C  e.  RR* )  ->  ( +oo +e C )  e.  RR* )
9375, 83, 92sylancr 411 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( +oo +e C )  e.  RR* )
94 xrlenlt 7963 . . . . . 6  |-  ( ( ( B +e
C )  e.  RR*  /\  ( +oo +e
C )  e.  RR* )  ->  ( ( B +e C )  <_  ( +oo +e C )  <->  -.  ( +oo +e C )  <  ( B +e C ) ) )
9585, 93, 94syl2anc 409 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  (
( B +e
C )  <_  ( +oo +e C )  <->  -.  ( +oo +e
C )  <  ( B +e C ) ) )
9691, 95mpbid 146 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  -.  ( +oo +e C )  <  ( B +e C ) )
9780oveq1d 5857 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( A +e C )  =  ( +oo +e C ) )
9897breq1d 3992 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  (
( A +e
C )  <  ( B +e C )  <-> 
( +oo +e C )  <  ( B +e C ) ) )
9996, 98mtbird 663 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  -.  ( A +e C )  <  ( B +e C ) )
10082, 992falsed 692 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = +oo )  ->  ( A  <  B  <->  ( A +e C )  <  ( B +e C ) ) )
101 simplr 520 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  A  = -oo )
102 mnflt 9719 . . . . . 6  |-  ( B  e.  RR  -> -oo  <  B )
103102adantl 275 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  -> -oo  <  B )
104101, 103eqbrtrd 4004 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  A  <  B
)
105101oveq1d 5857 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  ( A +e C )  =  ( -oo +e
C ) )
106 simpll3 1028 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  C  e.  RR )
107106, 28syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  C  e.  RR* )
108106, 58syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  C  =/= +oo )
109107, 108, 61syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  ( -oo +e C )  = -oo )
110105, 109eqtrd 2198 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  ( A +e C )  = -oo )
111 simpr 109 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  B  e.  RR )
112 rexadd 9788 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B +e
C )  =  ( B  +  C ) )
113 readdcl 7879 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
114112, 113eqeltrd 2243 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B +e
C )  e.  RR )
115111, 106, 114syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  ( B +e C )  e.  RR )
116 mnflt 9719 . . . . . 6  |-  ( ( B +e C )  e.  RR  -> -oo 
<  ( B +e C ) )
117115, 116syl 14 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  -> -oo  <  ( B +e C ) )
118110, 117eqbrtrd 4004 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  ( A +e C )  < 
( B +e
C ) )
119104, 1182thd 174 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  e.  RR )  ->  ( A  < 
B  <->  ( A +e C )  < 
( B +e
C ) ) )
120 simplr 520 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  A  = -oo )
121 simpr 109 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  B  = +oo )
122120, 121breq12d 3995 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  ( A  < 
B  <-> -oo  < +oo )
)
123 oveq1 5849 . . . . . . 7  |-  ( A  = -oo  ->  ( A +e C )  =  ( -oo +e C ) )
12447, 59, 61syl2anc 409 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( -oo +e C )  = -oo )
125123, 124sylan9eqr 2221 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = -oo )  ->  ( A +e C )  = -oo )
126125adantr 274 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  ( A +e C )  = -oo )
12726adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  ( B +e C )  =  ( +oo +e
C ) )
12847, 88, 30syl2anc 409 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( +oo +e C )  = +oo )
129128ad2antrr 480 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  ( +oo +e C )  = +oo )
130127, 129eqtrd 2198 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  ( B +e C )  = +oo )
131126, 130breq12d 3995 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  ( ( A +e C )  <  ( B +e C )  <-> -oo  < +oo ) )
132122, 131bitr4d 190 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = +oo )  ->  ( A  < 
B  <->  ( A +e C )  < 
( B +e
C ) ) )
133 simplr 520 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  A  = -oo )
134 simpr 109 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  B  = -oo )
135133, 134breq12d 3995 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( A  < 
B  <-> -oo  < -oo )
)
136124ad2antrr 480 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( -oo +e C )  = -oo )
137123eqeq1d 2174 . . . . . . 7  |-  ( A  = -oo  ->  (
( A +e
C )  = -oo  <->  ( -oo +e C )  = -oo ) )
138137ad2antlr 481 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( ( A +e C )  = -oo  <->  ( -oo +e C )  = -oo ) )
139136, 138mpbird 166 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( A +e C )  = -oo )
140134oveq1d 5857 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( B +e C )  =  ( -oo +e
C ) )
141140, 136eqtrd 2198 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( B +e C )  = -oo )
142139, 141breq12d 3995 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( ( A +e C )  <  ( B +e C )  <-> -oo  < -oo ) )
143135, 142bitr4d 190 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR )  /\  A  = -oo )  /\  B  = -oo )  ->  ( A  < 
B  <->  ( A +e C )  < 
( B +e
C ) ) )
14469adantr 274 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = -oo )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
145119, 132, 143, 144mpjao3dan 1297 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  A  = -oo )  ->  ( A  <  B  <->  ( A +e C )  <  ( B +e C ) ) )
146 elxr 9712 . . . 4  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
147146biimpi 119 . . 3  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1481473ad2ant1 1008 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
14971, 100, 145, 148mpjao3dan 1297 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  <  B  <->  ( A +e C )  <  ( B +e C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 967    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982  (class class class)co 5842   RRcr 7752    + caddc 7756   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932    < clt 7933    <_ cle 7934   +ecxad 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-xadd 9709
This theorem is referenced by:  xltadd2  9813  xlt2add  9816  xrmaxaddlem  11201
  Copyright terms: Public domain W3C validator