ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xleaddadd Unicode version

Theorem xleaddadd 9844
Description: Cancelling a factor of two in  <_ (expressed as addition rather than as a factor to avoid extended real multiplication). (Contributed by Jim Kingdon, 18-Apr-2023.)
Assertion
Ref Expression
xleaddadd  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )

Proof of Theorem xleaddadd
StepHypRef Expression
1 recn 7907 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
21adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  A  e.  CC )
322timesd 9120 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
2  x.  A )  =  ( A  +  A ) )
4 recn 7907 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
54ad2antlr 486 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  B  e.  CC )
652timesd 9120 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
2  x.  B )  =  ( B  +  B ) )
73, 6breq12d 4002 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
( 2  x.  A
)  <_  ( 2  x.  B )  <->  ( A  +  A )  <_  ( B  +  B )
) )
8 simpr 109 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  A  e.  RR )
9 simplr 525 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  B  e.  RR )
10 2re 8948 . . . . . 6  |-  2  e.  RR
1110a1i 9 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  2  e.  RR )
12 2pos 8969 . . . . . 6  |-  0  <  2
1312a1i 9 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <  2 )
14 lemul2 8773 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  <_  B 
<->  ( 2  x.  A
)  <_  ( 2  x.  B ) ) )
158, 9, 11, 13, 14syl112anc 1237 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A  <_  B  <->  ( 2  x.  A )  <_ 
( 2  x.  B
) ) )
168, 8rexaddd 9811 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A +e A )  =  ( A  +  A ) )
179, 9rexaddd 9811 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( B +e B )  =  ( B  +  B ) )
1816, 17breq12d 4002 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
( A +e
A )  <_  ( B +e B )  <-> 
( A  +  A
)  <_  ( B  +  B ) ) )
197, 15, 183bitr4d 219 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
20 renepnf 7967 . . . . . . . 8  |-  ( B  e.  RR  ->  B  =/= +oo )
2120neneqd 2361 . . . . . . 7  |-  ( B  e.  RR  ->  -.  B  = +oo )
2221ad2antlr 486 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  B  = +oo )
23 xgepnf 9773 . . . . . . 7  |-  ( B  e.  RR*  ->  ( +oo  <_  B  <->  B  = +oo ) )
2423ad3antlr 490 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( +oo  <_  B  <->  B  = +oo ) )
2522, 24mtbird 668 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -. +oo 
<_  B )
26 breq1 3992 . . . . . 6  |-  ( A  = +oo  ->  ( A  <_  B  <-> +oo  <_  B
) )
2726adantl 275 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A  <_  B  <-> +oo  <_  B
) )
2825, 27mtbird 668 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  A  <_  B )
29 simplr 525 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR )
3029, 29rexaddd 9811 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B +e B )  =  ( B  +  B ) )
3129, 29readdcld 7949 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B  +  B )  e.  RR )
3230, 31eqeltrd 2247 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B +e B )  e.  RR )
33 renepnf 7967 . . . . . . . 8  |-  ( ( B +e B )  e.  RR  ->  ( B +e B )  =/= +oo )
3433neneqd 2361 . . . . . . 7  |-  ( ( B +e B )  e.  RR  ->  -.  ( B +e
B )  = +oo )
3532, 34syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  ( B +e B )  = +oo )
36 simpllr 529 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR* )
3736, 36xaddcld 9841 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B +e B )  e.  RR* )
38 xgepnf 9773 . . . . . . 7  |-  ( ( B +e B )  e.  RR*  ->  ( +oo  <_  ( B +e B )  <-> 
( B +e
B )  = +oo ) )
3937, 38syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( +oo  <_  ( B +e B )  <->  ( B +e B )  = +oo ) )
4035, 39mtbird 668 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -. +oo 
<_  ( B +e
B ) )
41 simpr 109 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
4241, 41oveq12d 5871 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e A )  =  ( +oo +e +oo ) )
43 pnfxr 7972 . . . . . . . 8  |- +oo  e.  RR*
44 pnfnemnf 7974 . . . . . . . 8  |- +oo  =/= -oo
45 xaddpnf2 9804 . . . . . . . 8  |-  ( ( +oo  e.  RR*  /\ +oo  =/= -oo )  ->  ( +oo +e +oo )  = +oo )
4643, 44, 45mp2an 424 . . . . . . 7  |-  ( +oo +e +oo )  = +oo
4742, 46eqtrdi 2219 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e A )  = +oo )
4847breq1d 3999 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  (
( A +e
A )  <_  ( B +e B )  <-> +oo  <_  ( B +e B ) ) )
4940, 48mtbird 668 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  ( A +e A )  <_  ( B +e B ) )
5028, 492falsed 697 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
51 mnfle 9749 . . . . . 6  |-  ( B  e.  RR*  -> -oo  <_  B )
5251ad3antlr 490 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  -> -oo  <_  B )
53 breq1 3992 . . . . . 6  |-  ( A  = -oo  ->  ( A  <_  B  <-> -oo  <_  B
) )
5453adantl 275 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A  <_  B  <-> -oo  <_  B
) )
5552, 54mpbird 166 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  <_  B )
56 oveq1 5860 . . . . . . 7  |-  ( A  = -oo  ->  ( A +e A )  =  ( -oo +e A ) )
5756adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e A )  =  ( -oo +e A ) )
58 simplll 528 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  e.  RR* )
59 mnfnepnf 7975 . . . . . . . . 9  |- -oo  =/= +oo
60 neeq1 2353 . . . . . . . . 9  |-  ( A  = -oo  ->  ( A  =/= +oo  <-> -oo  =/= +oo )
)
6159, 60mpbiri 167 . . . . . . . 8  |-  ( A  = -oo  ->  A  =/= +oo )
6261adantl 275 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  =/= +oo )
63 xaddmnf2 9806 . . . . . . 7  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( -oo +e A )  = -oo )
6458, 62, 63syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( -oo +e A )  = -oo )
6557, 64eqtrd 2203 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e A )  = -oo )
66 simpr 109 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  e.  RR* )
6766, 66xaddcld 9841 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B +e B )  e.  RR* )
6867ad2antrr 485 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( B +e B )  e.  RR* )
69 mnfle 9749 . . . . . 6  |-  ( ( B +e B )  e.  RR*  -> -oo 
<_  ( B +e
B ) )
7068, 69syl 14 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  -> -oo  <_  ( B +e B ) )
7165, 70eqbrtrd 4011 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e A )  <_  ( B +e B ) )
7255, 712thd 174 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
73 elxr 9733 . . . . 5  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7473biimpi 119 . . . 4  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7574ad2antrr 485 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7619, 50, 72, 75mpjao3dan 1302 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  e.  RR )  ->  ( A  <_  B 
<->  ( A +e
A )  <_  ( B +e B ) ) )
77 pnfge 9746 . . . . 5  |-  ( A  e.  RR*  ->  A  <_ +oo )
7877ad2antrr 485 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  A  <_ +oo )
79 breq2 3993 . . . . 5  |-  ( B  = +oo  ->  ( A  <_  B  <->  A  <_ +oo ) )
8079adantl 275 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A  <_  B 
<->  A  <_ +oo )
)
8178, 80mpbird 166 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  A  <_  B
)
82 simpll 524 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  A  e.  RR* )
8382, 82xaddcld 9841 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A +e A )  e. 
RR* )
84 pnfge 9746 . . . . 5  |-  ( ( A +e A )  e.  RR*  ->  ( A +e A )  <_ +oo )
8583, 84syl 14 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A +e A )  <_ +oo )
86 oveq1 5860 . . . . . 6  |-  ( B  = +oo  ->  ( B +e B )  =  ( +oo +e B ) )
87 eleq1 2233 . . . . . . . 8  |-  ( B  = +oo  ->  ( B  e.  RR*  <-> +oo  e.  RR* ) )
8843, 87mpbiri 167 . . . . . . 7  |-  ( B  = +oo  ->  B  e.  RR* )
89 neeq1 2353 . . . . . . . 8  |-  ( B  = +oo  ->  ( B  =/= -oo  <-> +oo  =/= -oo )
)
9044, 89mpbiri 167 . . . . . . 7  |-  ( B  = +oo  ->  B  =/= -oo )
91 xaddpnf2 9804 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
9288, 90, 91syl2anc 409 . . . . . 6  |-  ( B  = +oo  ->  ( +oo +e B )  = +oo )
9386, 92eqtrd 2203 . . . . 5  |-  ( B  = +oo  ->  ( B +e B )  = +oo )
9493adantl 275 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( B +e B )  = +oo )
9585, 94breqtrrd 4017 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A +e A )  <_ 
( B +e
B ) )
9681, 952thd 174 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A  <_  B 
<->  ( A +e
A )  <_  ( B +e B ) ) )
97 simpr 109 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  A  e.  RR )
9897renemnfd 7971 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  A  =/= -oo )
9998neneqd 2361 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  A  = -oo )
100 ngtmnft 9774 . . . . . . . . 9  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo  <  A ) )
101 mnfxr 7976 . . . . . . . . . 10  |- -oo  e.  RR*
102 xrlenlt 7984 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\ -oo  e.  RR* )  ->  ( A  <_ -oo  <->  -. -oo  <  A
) )
103101, 102mpan2 423 . . . . . . . . 9  |-  ( A  e.  RR*  ->  ( A  <_ -oo  <->  -. -oo  <  A
) )
104100, 103bitr4d 190 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  A  <_ -oo ) )
105104ad2antrr 485 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  = -oo  <->  A  <_ -oo )
)
106 breq2 3993 . . . . . . . 8  |-  ( B  = -oo  ->  ( A  <_  B  <->  A  <_ -oo ) )
107106adantl 275 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  <_  B 
<->  A  <_ -oo )
)
108105, 107bitr4d 190 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  = -oo  <->  A  <_  B ) )
109108adantr 274 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A  = -oo  <->  A  <_  B ) )
11099, 109mtbid 667 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  A  <_  B )
11197, 97rexaddd 9811 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A +e A )  =  ( A  +  A ) )
11297, 97readdcld 7949 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A  +  A )  e.  RR )
113111, 112eqeltrd 2247 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A +e A )  e.  RR )
114113renemnfd 7971 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A +e A )  =/= -oo )
115114neneqd 2361 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  ( A +e A )  = -oo )
116 simpll 524 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  A  e.  RR* )
117116, 116xaddcld 9841 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A +e A )  e. 
RR* )
118 xrlenlt 7984 . . . . . . . . 9  |-  ( ( ( A +e
A )  e.  RR*  /\ -oo  e.  RR* )  ->  (
( A +e
A )  <_ -oo  <->  -. -oo  <  ( A +e A ) ) )
119101, 118mpan2 423 . . . . . . . 8  |-  ( ( A +e A )  e.  RR*  ->  ( ( A +e
A )  <_ -oo  <->  -. -oo  <  ( A +e A ) ) )
120117, 119syl 14 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  <_ -oo  <->  -. -oo  <  ( A +e A ) ) )
121 oveq2 5861 . . . . . . . . . 10  |-  ( B  = -oo  ->  ( B +e B )  =  ( B +e -oo ) )
122 eleq1 2233 . . . . . . . . . . . 12  |-  ( B  = -oo  ->  ( B  e.  RR*  <-> -oo  e.  RR* ) )
123101, 122mpbiri 167 . . . . . . . . . . 11  |-  ( B  = -oo  ->  B  e.  RR* )
12490necon2i 2396 . . . . . . . . . . 11  |-  ( B  = -oo  ->  B  =/= +oo )
125 xaddmnf1 9805 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( B +e -oo )  = -oo )
126123, 124, 125syl2anc 409 . . . . . . . . . 10  |-  ( B  = -oo  ->  ( B +e -oo )  = -oo )
127121, 126eqtrd 2203 . . . . . . . . 9  |-  ( B  = -oo  ->  ( B +e B )  = -oo )
128127adantl 275 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( B +e B )  = -oo )
129128breq2d 4001 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  <_  ( B +e B )  <->  ( A +e A )  <_ -oo ) )
130 ngtmnft 9774 . . . . . . . 8  |-  ( ( A +e A )  e.  RR*  ->  ( ( A +e
A )  = -oo  <->  -. -oo 
<  ( A +e A ) ) )
131117, 130syl 14 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  = -oo  <->  -. -oo  <  ( A +e A ) ) )
132120, 129, 1313bitr4rd 220 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  = -oo  <->  ( A +e A )  <_  ( B +e B ) ) )
133132adantr 274 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  (
( A +e
A )  = -oo  <->  ( A +e A )  <_  ( B +e B ) ) )
134115, 133mtbid 667 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  ( A +e A )  <_  ( B +e B ) )
135110, 1342falsed 697 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
13644neii 2342 . . . . . 6  |-  -. +oo  = -oo
137 eqeq1 2177 . . . . . . 7  |-  ( A  = +oo  ->  ( A  = -oo  <-> +oo  = -oo ) )
138137adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A  = -oo  <-> +oo  = -oo ) )
139136, 138mtbiri 670 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  A  = -oo )
140108adantr 274 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A  = -oo  <->  A  <_  B ) )
141139, 140mtbid 667 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  A  <_  B )
142 simplll 528 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  A  e.  RR* )
143139neqned 2347 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  A  =/= -oo )
144 xaddnemnf 9814 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( A  e.  RR*  /\  A  =/= -oo )
)  ->  ( A +e A )  =/= -oo )
145142, 143, 142, 143, 144syl22anc 1234 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A +e A )  =/= -oo )
146145neneqd 2361 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  ( A +e A )  = -oo )
147132adantr 274 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  (
( A +e
A )  = -oo  <->  ( A +e A )  <_  ( B +e B ) ) )
148146, 147mtbid 667 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  ( A +e A )  <_  ( B +e B ) )
149141, 1482falsed 697 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
150108biimpa 294 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  <_  B )
151 simplll 528 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  e.  RR* )
152151, 151xaddcld 9841 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  e.  RR* )
153152xrleidd 9758 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  <_  ( A +e A ) )
154 simpr 109 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  = -oo )
155 simplr 525 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  B  = -oo )
156154, 155eqtr4d 2206 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  =  B )
157156, 156oveq12d 5871 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  =  ( B +e B ) )
158153, 157breqtrd 4015 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  <_  ( B +e B ) )
159150, 1582thd 174 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
16074ad2antrr 485 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
161135, 149, 159, 160mpjao3dan 1302 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  <_  B 
<->  ( A +e
A )  <_  ( B +e B ) ) )
162 elxr 9733 . . . 4  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
163162biimpi 119 . . 3  |-  ( B  e.  RR*  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
164163adantl 275 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
16576, 96, 161, 164mpjao3dan 1302 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 972    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3989  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774    + caddc 7777    x. cmul 7779   +oocpnf 7951   -oocmnf 7952   RR*cxr 7953    < clt 7954    <_ cle 7955   2c2 8929   +ecxad 9727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-lttrn 7888  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-2 8937  df-xadd 9730
This theorem is referenced by:  psmetge0  13125  xmetge0  13159
  Copyright terms: Public domain W3C validator