| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xleaddadd | Unicode version | ||
| Description: Cancelling a factor of
two in |
| Ref | Expression |
|---|---|
| xleaddadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 8058 |
. . . . . . 7
| |
| 2 | 1 | adantl 277 |
. . . . . 6
|
| 3 | 2 | 2timesd 9280 |
. . . . 5
|
| 4 | recn 8058 |
. . . . . . 7
| |
| 5 | 4 | ad2antlr 489 |
. . . . . 6
|
| 6 | 5 | 2timesd 9280 |
. . . . 5
|
| 7 | 3, 6 | breq12d 4057 |
. . . 4
|
| 8 | simpr 110 |
. . . . 5
| |
| 9 | simplr 528 |
. . . . 5
| |
| 10 | 2re 9106 |
. . . . . 6
| |
| 11 | 10 | a1i 9 |
. . . . 5
|
| 12 | 2pos 9127 |
. . . . . 6
| |
| 13 | 12 | a1i 9 |
. . . . 5
|
| 14 | lemul2 8930 |
. . . . 5
| |
| 15 | 8, 9, 11, 13, 14 | syl112anc 1254 |
. . . 4
|
| 16 | 8, 8 | rexaddd 9976 |
. . . . 5
|
| 17 | 9, 9 | rexaddd 9976 |
. . . . 5
|
| 18 | 16, 17 | breq12d 4057 |
. . . 4
|
| 19 | 7, 15, 18 | 3bitr4d 220 |
. . 3
|
| 20 | renepnf 8120 |
. . . . . . . 8
| |
| 21 | 20 | neneqd 2397 |
. . . . . . 7
|
| 22 | 21 | ad2antlr 489 |
. . . . . 6
|
| 23 | xgepnf 9938 |
. . . . . . 7
| |
| 24 | 23 | ad3antlr 493 |
. . . . . 6
|
| 25 | 22, 24 | mtbird 675 |
. . . . 5
|
| 26 | breq1 4047 |
. . . . . 6
| |
| 27 | 26 | adantl 277 |
. . . . 5
|
| 28 | 25, 27 | mtbird 675 |
. . . 4
|
| 29 | simplr 528 |
. . . . . . . . 9
| |
| 30 | 29, 29 | rexaddd 9976 |
. . . . . . . 8
|
| 31 | 29, 29 | readdcld 8102 |
. . . . . . . 8
|
| 32 | 30, 31 | eqeltrd 2282 |
. . . . . . 7
|
| 33 | renepnf 8120 |
. . . . . . . 8
| |
| 34 | 33 | neneqd 2397 |
. . . . . . 7
|
| 35 | 32, 34 | syl 14 |
. . . . . 6
|
| 36 | simpllr 534 |
. . . . . . . 8
| |
| 37 | 36, 36 | xaddcld 10006 |
. . . . . . 7
|
| 38 | xgepnf 9938 |
. . . . . . 7
| |
| 39 | 37, 38 | syl 14 |
. . . . . 6
|
| 40 | 35, 39 | mtbird 675 |
. . . . 5
|
| 41 | simpr 110 |
. . . . . . . 8
| |
| 42 | 41, 41 | oveq12d 5962 |
. . . . . . 7
|
| 43 | pnfxr 8125 |
. . . . . . . 8
| |
| 44 | pnfnemnf 8127 |
. . . . . . . 8
| |
| 45 | xaddpnf2 9969 |
. . . . . . . 8
| |
| 46 | 43, 44, 45 | mp2an 426 |
. . . . . . 7
|
| 47 | 42, 46 | eqtrdi 2254 |
. . . . . 6
|
| 48 | 47 | breq1d 4054 |
. . . . 5
|
| 49 | 40, 48 | mtbird 675 |
. . . 4
|
| 50 | 28, 49 | 2falsed 704 |
. . 3
|
| 51 | mnfle 9914 |
. . . . . 6
| |
| 52 | 51 | ad3antlr 493 |
. . . . 5
|
| 53 | breq1 4047 |
. . . . . 6
| |
| 54 | 53 | adantl 277 |
. . . . 5
|
| 55 | 52, 54 | mpbird 167 |
. . . 4
|
| 56 | oveq1 5951 |
. . . . . . 7
| |
| 57 | 56 | adantl 277 |
. . . . . 6
|
| 58 | simplll 533 |
. . . . . . 7
| |
| 59 | mnfnepnf 8128 |
. . . . . . . . 9
| |
| 60 | neeq1 2389 |
. . . . . . . . 9
| |
| 61 | 59, 60 | mpbiri 168 |
. . . . . . . 8
|
| 62 | 61 | adantl 277 |
. . . . . . 7
|
| 63 | xaddmnf2 9971 |
. . . . . . 7
| |
| 64 | 58, 62, 63 | syl2anc 411 |
. . . . . 6
|
| 65 | 57, 64 | eqtrd 2238 |
. . . . 5
|
| 66 | simpr 110 |
. . . . . . . 8
| |
| 67 | 66, 66 | xaddcld 10006 |
. . . . . . 7
|
| 68 | 67 | ad2antrr 488 |
. . . . . 6
|
| 69 | mnfle 9914 |
. . . . . 6
| |
| 70 | 68, 69 | syl 14 |
. . . . 5
|
| 71 | 65, 70 | eqbrtrd 4066 |
. . . 4
|
| 72 | 55, 71 | 2thd 175 |
. . 3
|
| 73 | elxr 9898 |
. . . . 5
| |
| 74 | 73 | biimpi 120 |
. . . 4
|
| 75 | 74 | ad2antrr 488 |
. . 3
|
| 76 | 19, 50, 72, 75 | mpjao3dan 1320 |
. 2
|
| 77 | pnfge 9911 |
. . . . 5
| |
| 78 | 77 | ad2antrr 488 |
. . . 4
|
| 79 | breq2 4048 |
. . . . 5
| |
| 80 | 79 | adantl 277 |
. . . 4
|
| 81 | 78, 80 | mpbird 167 |
. . 3
|
| 82 | simpll 527 |
. . . . . 6
| |
| 83 | 82, 82 | xaddcld 10006 |
. . . . 5
|
| 84 | pnfge 9911 |
. . . . 5
| |
| 85 | 83, 84 | syl 14 |
. . . 4
|
| 86 | oveq1 5951 |
. . . . . 6
| |
| 87 | eleq1 2268 |
. . . . . . . 8
| |
| 88 | 43, 87 | mpbiri 168 |
. . . . . . 7
|
| 89 | neeq1 2389 |
. . . . . . . 8
| |
| 90 | 44, 89 | mpbiri 168 |
. . . . . . 7
|
| 91 | xaddpnf2 9969 |
. . . . . . 7
| |
| 92 | 88, 90, 91 | syl2anc 411 |
. . . . . 6
|
| 93 | 86, 92 | eqtrd 2238 |
. . . . 5
|
| 94 | 93 | adantl 277 |
. . . 4
|
| 95 | 85, 94 | breqtrrd 4072 |
. . 3
|
| 96 | 81, 95 | 2thd 175 |
. 2
|
| 97 | simpr 110 |
. . . . . . 7
| |
| 98 | 97 | renemnfd 8124 |
. . . . . 6
|
| 99 | 98 | neneqd 2397 |
. . . . 5
|
| 100 | ngtmnft 9939 |
. . . . . . . . 9
| |
| 101 | mnfxr 8129 |
. . . . . . . . . 10
| |
| 102 | xrlenlt 8137 |
. . . . . . . . . 10
| |
| 103 | 101, 102 | mpan2 425 |
. . . . . . . . 9
|
| 104 | 100, 103 | bitr4d 191 |
. . . . . . . 8
|
| 105 | 104 | ad2antrr 488 |
. . . . . . 7
|
| 106 | breq2 4048 |
. . . . . . . 8
| |
| 107 | 106 | adantl 277 |
. . . . . . 7
|
| 108 | 105, 107 | bitr4d 191 |
. . . . . 6
|
| 109 | 108 | adantr 276 |
. . . . 5
|
| 110 | 99, 109 | mtbid 674 |
. . . 4
|
| 111 | 97, 97 | rexaddd 9976 |
. . . . . . . 8
|
| 112 | 97, 97 | readdcld 8102 |
. . . . . . . 8
|
| 113 | 111, 112 | eqeltrd 2282 |
. . . . . . 7
|
| 114 | 113 | renemnfd 8124 |
. . . . . 6
|
| 115 | 114 | neneqd 2397 |
. . . . 5
|
| 116 | simpll 527 |
. . . . . . . . 9
| |
| 117 | 116, 116 | xaddcld 10006 |
. . . . . . . 8
|
| 118 | xrlenlt 8137 |
. . . . . . . . 9
| |
| 119 | 101, 118 | mpan2 425 |
. . . . . . . 8
|
| 120 | 117, 119 | syl 14 |
. . . . . . 7
|
| 121 | oveq2 5952 |
. . . . . . . . . 10
| |
| 122 | eleq1 2268 |
. . . . . . . . . . . 12
| |
| 123 | 101, 122 | mpbiri 168 |
. . . . . . . . . . 11
|
| 124 | 90 | necon2i 2432 |
. . . . . . . . . . 11
|
| 125 | xaddmnf1 9970 |
. . . . . . . . . . 11
| |
| 126 | 123, 124, 125 | syl2anc 411 |
. . . . . . . . . 10
|
| 127 | 121, 126 | eqtrd 2238 |
. . . . . . . . 9
|
| 128 | 127 | adantl 277 |
. . . . . . . 8
|
| 129 | 128 | breq2d 4056 |
. . . . . . 7
|
| 130 | ngtmnft 9939 |
. . . . . . . 8
| |
| 131 | 117, 130 | syl 14 |
. . . . . . 7
|
| 132 | 120, 129, 131 | 3bitr4rd 221 |
. . . . . 6
|
| 133 | 132 | adantr 276 |
. . . . 5
|
| 134 | 115, 133 | mtbid 674 |
. . . 4
|
| 135 | 110, 134 | 2falsed 704 |
. . 3
|
| 136 | 44 | neii 2378 |
. . . . . 6
|
| 137 | eqeq1 2212 |
. . . . . . 7
| |
| 138 | 137 | adantl 277 |
. . . . . 6
|
| 139 | 136, 138 | mtbiri 677 |
. . . . 5
|
| 140 | 108 | adantr 276 |
. . . . 5
|
| 141 | 139, 140 | mtbid 674 |
. . . 4
|
| 142 | simplll 533 |
. . . . . . 7
| |
| 143 | 139 | neqned 2383 |
. . . . . . 7
|
| 144 | xaddnemnf 9979 |
. . . . . . 7
| |
| 145 | 142, 143, 142, 143, 144 | syl22anc 1251 |
. . . . . 6
|
| 146 | 145 | neneqd 2397 |
. . . . 5
|
| 147 | 132 | adantr 276 |
. . . . 5
|
| 148 | 146, 147 | mtbid 674 |
. . . 4
|
| 149 | 141, 148 | 2falsed 704 |
. . 3
|
| 150 | 108 | biimpa 296 |
. . . 4
|
| 151 | simplll 533 |
. . . . . . 7
| |
| 152 | 151, 151 | xaddcld 10006 |
. . . . . 6
|
| 153 | 152 | xrleidd 9923 |
. . . . 5
|
| 154 | simpr 110 |
. . . . . . 7
| |
| 155 | simplr 528 |
. . . . . . 7
| |
| 156 | 154, 155 | eqtr4d 2241 |
. . . . . 6
|
| 157 | 156, 156 | oveq12d 5962 |
. . . . 5
|
| 158 | 153, 157 | breqtrd 4070 |
. . . 4
|
| 159 | 150, 158 | 2thd 175 |
. . 3
|
| 160 | 74 | ad2antrr 488 |
. . 3
|
| 161 | 135, 149, 159, 160 | mpjao3dan 1320 |
. 2
|
| 162 | elxr 9898 |
. . . 4
| |
| 163 | 162 | biimpi 120 |
. . 3
|
| 164 | 163 | adantl 277 |
. 2
|
| 165 | 76, 96, 161, 164 | mpjao3dan 1320 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-lttrn 8039 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-2 9095 df-xadd 9895 |
| This theorem is referenced by: psmetge0 14803 xmetge0 14837 |
| Copyright terms: Public domain | W3C validator |