ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xleaddadd Unicode version

Theorem xleaddadd 9979
Description: Cancelling a factor of two in  <_ (expressed as addition rather than as a factor to avoid extended real multiplication). (Contributed by Jim Kingdon, 18-Apr-2023.)
Assertion
Ref Expression
xleaddadd  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )

Proof of Theorem xleaddadd
StepHypRef Expression
1 recn 8029 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
21adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  A  e.  CC )
322timesd 9251 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
2  x.  A )  =  ( A  +  A ) )
4 recn 8029 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
54ad2antlr 489 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  B  e.  CC )
652timesd 9251 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
2  x.  B )  =  ( B  +  B ) )
73, 6breq12d 4047 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
( 2  x.  A
)  <_  ( 2  x.  B )  <->  ( A  +  A )  <_  ( B  +  B )
) )
8 simpr 110 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  A  e.  RR )
9 simplr 528 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  B  e.  RR )
10 2re 9077 . . . . . 6  |-  2  e.  RR
1110a1i 9 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  2  e.  RR )
12 2pos 9098 . . . . . 6  |-  0  <  2
1312a1i 9 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <  2 )
14 lemul2 8901 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  <_  B 
<->  ( 2  x.  A
)  <_  ( 2  x.  B ) ) )
158, 9, 11, 13, 14syl112anc 1253 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A  <_  B  <->  ( 2  x.  A )  <_ 
( 2  x.  B
) ) )
168, 8rexaddd 9946 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A +e A )  =  ( A  +  A ) )
179, 9rexaddd 9946 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( B +e B )  =  ( B  +  B ) )
1816, 17breq12d 4047 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
( A +e
A )  <_  ( B +e B )  <-> 
( A  +  A
)  <_  ( B  +  B ) ) )
197, 15, 183bitr4d 220 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
20 renepnf 8091 . . . . . . . 8  |-  ( B  e.  RR  ->  B  =/= +oo )
2120neneqd 2388 . . . . . . 7  |-  ( B  e.  RR  ->  -.  B  = +oo )
2221ad2antlr 489 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  B  = +oo )
23 xgepnf 9908 . . . . . . 7  |-  ( B  e.  RR*  ->  ( +oo  <_  B  <->  B  = +oo ) )
2423ad3antlr 493 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( +oo  <_  B  <->  B  = +oo ) )
2522, 24mtbird 674 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -. +oo 
<_  B )
26 breq1 4037 . . . . . 6  |-  ( A  = +oo  ->  ( A  <_  B  <-> +oo  <_  B
) )
2726adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A  <_  B  <-> +oo  <_  B
) )
2825, 27mtbird 674 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  A  <_  B )
29 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR )
3029, 29rexaddd 9946 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B +e B )  =  ( B  +  B ) )
3129, 29readdcld 8073 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B  +  B )  e.  RR )
3230, 31eqeltrd 2273 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B +e B )  e.  RR )
33 renepnf 8091 . . . . . . . 8  |-  ( ( B +e B )  e.  RR  ->  ( B +e B )  =/= +oo )
3433neneqd 2388 . . . . . . 7  |-  ( ( B +e B )  e.  RR  ->  -.  ( B +e
B )  = +oo )
3532, 34syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  ( B +e B )  = +oo )
36 simpllr 534 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR* )
3736, 36xaddcld 9976 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B +e B )  e.  RR* )
38 xgepnf 9908 . . . . . . 7  |-  ( ( B +e B )  e.  RR*  ->  ( +oo  <_  ( B +e B )  <-> 
( B +e
B )  = +oo ) )
3937, 38syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( +oo  <_  ( B +e B )  <->  ( B +e B )  = +oo ) )
4035, 39mtbird 674 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -. +oo 
<_  ( B +e
B ) )
41 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
4241, 41oveq12d 5943 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e A )  =  ( +oo +e +oo ) )
43 pnfxr 8096 . . . . . . . 8  |- +oo  e.  RR*
44 pnfnemnf 8098 . . . . . . . 8  |- +oo  =/= -oo
45 xaddpnf2 9939 . . . . . . . 8  |-  ( ( +oo  e.  RR*  /\ +oo  =/= -oo )  ->  ( +oo +e +oo )  = +oo )
4643, 44, 45mp2an 426 . . . . . . 7  |-  ( +oo +e +oo )  = +oo
4742, 46eqtrdi 2245 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e A )  = +oo )
4847breq1d 4044 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  (
( A +e
A )  <_  ( B +e B )  <-> +oo  <_  ( B +e B ) ) )
4940, 48mtbird 674 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  ( A +e A )  <_  ( B +e B ) )
5028, 492falsed 703 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
51 mnfle 9884 . . . . . 6  |-  ( B  e.  RR*  -> -oo  <_  B )
5251ad3antlr 493 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  -> -oo  <_  B )
53 breq1 4037 . . . . . 6  |-  ( A  = -oo  ->  ( A  <_  B  <-> -oo  <_  B
) )
5453adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A  <_  B  <-> -oo  <_  B
) )
5552, 54mpbird 167 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  <_  B )
56 oveq1 5932 . . . . . . 7  |-  ( A  = -oo  ->  ( A +e A )  =  ( -oo +e A ) )
5756adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e A )  =  ( -oo +e A ) )
58 simplll 533 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  e.  RR* )
59 mnfnepnf 8099 . . . . . . . . 9  |- -oo  =/= +oo
60 neeq1 2380 . . . . . . . . 9  |-  ( A  = -oo  ->  ( A  =/= +oo  <-> -oo  =/= +oo )
)
6159, 60mpbiri 168 . . . . . . . 8  |-  ( A  = -oo  ->  A  =/= +oo )
6261adantl 277 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  =/= +oo )
63 xaddmnf2 9941 . . . . . . 7  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( -oo +e A )  = -oo )
6458, 62, 63syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( -oo +e A )  = -oo )
6557, 64eqtrd 2229 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e A )  = -oo )
66 simpr 110 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  e.  RR* )
6766, 66xaddcld 9976 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B +e B )  e.  RR* )
6867ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( B +e B )  e.  RR* )
69 mnfle 9884 . . . . . 6  |-  ( ( B +e B )  e.  RR*  -> -oo 
<_  ( B +e
B ) )
7068, 69syl 14 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  -> -oo  <_  ( B +e B ) )
7165, 70eqbrtrd 4056 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e A )  <_  ( B +e B ) )
7255, 712thd 175 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
73 elxr 9868 . . . . 5  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7473biimpi 120 . . . 4  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7574ad2antrr 488 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7619, 50, 72, 75mpjao3dan 1318 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  e.  RR )  ->  ( A  <_  B 
<->  ( A +e
A )  <_  ( B +e B ) ) )
77 pnfge 9881 . . . . 5  |-  ( A  e.  RR*  ->  A  <_ +oo )
7877ad2antrr 488 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  A  <_ +oo )
79 breq2 4038 . . . . 5  |-  ( B  = +oo  ->  ( A  <_  B  <->  A  <_ +oo ) )
8079adantl 277 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A  <_  B 
<->  A  <_ +oo )
)
8178, 80mpbird 167 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  A  <_  B
)
82 simpll 527 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  A  e.  RR* )
8382, 82xaddcld 9976 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A +e A )  e. 
RR* )
84 pnfge 9881 . . . . 5  |-  ( ( A +e A )  e.  RR*  ->  ( A +e A )  <_ +oo )
8583, 84syl 14 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A +e A )  <_ +oo )
86 oveq1 5932 . . . . . 6  |-  ( B  = +oo  ->  ( B +e B )  =  ( +oo +e B ) )
87 eleq1 2259 . . . . . . . 8  |-  ( B  = +oo  ->  ( B  e.  RR*  <-> +oo  e.  RR* ) )
8843, 87mpbiri 168 . . . . . . 7  |-  ( B  = +oo  ->  B  e.  RR* )
89 neeq1 2380 . . . . . . . 8  |-  ( B  = +oo  ->  ( B  =/= -oo  <-> +oo  =/= -oo )
)
9044, 89mpbiri 168 . . . . . . 7  |-  ( B  = +oo  ->  B  =/= -oo )
91 xaddpnf2 9939 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
9288, 90, 91syl2anc 411 . . . . . 6  |-  ( B  = +oo  ->  ( +oo +e B )  = +oo )
9386, 92eqtrd 2229 . . . . 5  |-  ( B  = +oo  ->  ( B +e B )  = +oo )
9493adantl 277 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( B +e B )  = +oo )
9585, 94breqtrrd 4062 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A +e A )  <_ 
( B +e
B ) )
9681, 952thd 175 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A  <_  B 
<->  ( A +e
A )  <_  ( B +e B ) ) )
97 simpr 110 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  A  e.  RR )
9897renemnfd 8095 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  A  =/= -oo )
9998neneqd 2388 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  A  = -oo )
100 ngtmnft 9909 . . . . . . . . 9  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo  <  A ) )
101 mnfxr 8100 . . . . . . . . . 10  |- -oo  e.  RR*
102 xrlenlt 8108 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\ -oo  e.  RR* )  ->  ( A  <_ -oo  <->  -. -oo  <  A
) )
103101, 102mpan2 425 . . . . . . . . 9  |-  ( A  e.  RR*  ->  ( A  <_ -oo  <->  -. -oo  <  A
) )
104100, 103bitr4d 191 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  A  <_ -oo ) )
105104ad2antrr 488 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  = -oo  <->  A  <_ -oo )
)
106 breq2 4038 . . . . . . . 8  |-  ( B  = -oo  ->  ( A  <_  B  <->  A  <_ -oo ) )
107106adantl 277 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  <_  B 
<->  A  <_ -oo )
)
108105, 107bitr4d 191 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  = -oo  <->  A  <_  B ) )
109108adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A  = -oo  <->  A  <_  B ) )
11099, 109mtbid 673 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  A  <_  B )
11197, 97rexaddd 9946 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A +e A )  =  ( A  +  A ) )
11297, 97readdcld 8073 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A  +  A )  e.  RR )
113111, 112eqeltrd 2273 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A +e A )  e.  RR )
114113renemnfd 8095 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A +e A )  =/= -oo )
115114neneqd 2388 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  ( A +e A )  = -oo )
116 simpll 527 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  A  e.  RR* )
117116, 116xaddcld 9976 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A +e A )  e. 
RR* )
118 xrlenlt 8108 . . . . . . . . 9  |-  ( ( ( A +e
A )  e.  RR*  /\ -oo  e.  RR* )  ->  (
( A +e
A )  <_ -oo  <->  -. -oo  <  ( A +e A ) ) )
119101, 118mpan2 425 . . . . . . . 8  |-  ( ( A +e A )  e.  RR*  ->  ( ( A +e
A )  <_ -oo  <->  -. -oo  <  ( A +e A ) ) )
120117, 119syl 14 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  <_ -oo  <->  -. -oo  <  ( A +e A ) ) )
121 oveq2 5933 . . . . . . . . . 10  |-  ( B  = -oo  ->  ( B +e B )  =  ( B +e -oo ) )
122 eleq1 2259 . . . . . . . . . . . 12  |-  ( B  = -oo  ->  ( B  e.  RR*  <-> -oo  e.  RR* ) )
123101, 122mpbiri 168 . . . . . . . . . . 11  |-  ( B  = -oo  ->  B  e.  RR* )
12490necon2i 2423 . . . . . . . . . . 11  |-  ( B  = -oo  ->  B  =/= +oo )
125 xaddmnf1 9940 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( B +e -oo )  = -oo )
126123, 124, 125syl2anc 411 . . . . . . . . . 10  |-  ( B  = -oo  ->  ( B +e -oo )  = -oo )
127121, 126eqtrd 2229 . . . . . . . . 9  |-  ( B  = -oo  ->  ( B +e B )  = -oo )
128127adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( B +e B )  = -oo )
129128breq2d 4046 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  <_  ( B +e B )  <->  ( A +e A )  <_ -oo ) )
130 ngtmnft 9909 . . . . . . . 8  |-  ( ( A +e A )  e.  RR*  ->  ( ( A +e
A )  = -oo  <->  -. -oo 
<  ( A +e A ) ) )
131117, 130syl 14 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  = -oo  <->  -. -oo  <  ( A +e A ) ) )
132120, 129, 1313bitr4rd 221 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  = -oo  <->  ( A +e A )  <_  ( B +e B ) ) )
133132adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  (
( A +e
A )  = -oo  <->  ( A +e A )  <_  ( B +e B ) ) )
134115, 133mtbid 673 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  ( A +e A )  <_  ( B +e B ) )
135110, 1342falsed 703 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
13644neii 2369 . . . . . 6  |-  -. +oo  = -oo
137 eqeq1 2203 . . . . . . 7  |-  ( A  = +oo  ->  ( A  = -oo  <-> +oo  = -oo ) )
138137adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A  = -oo  <-> +oo  = -oo ) )
139136, 138mtbiri 676 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  A  = -oo )
140108adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A  = -oo  <->  A  <_  B ) )
141139, 140mtbid 673 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  A  <_  B )
142 simplll 533 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  A  e.  RR* )
143139neqned 2374 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  A  =/= -oo )
144 xaddnemnf 9949 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( A  e.  RR*  /\  A  =/= -oo )
)  ->  ( A +e A )  =/= -oo )
145142, 143, 142, 143, 144syl22anc 1250 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A +e A )  =/= -oo )
146145neneqd 2388 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  ( A +e A )  = -oo )
147132adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  (
( A +e
A )  = -oo  <->  ( A +e A )  <_  ( B +e B ) ) )
148146, 147mtbid 673 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  ( A +e A )  <_  ( B +e B ) )
149141, 1482falsed 703 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
150108biimpa 296 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  <_  B )
151 simplll 533 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  e.  RR* )
152151, 151xaddcld 9976 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  e.  RR* )
153152xrleidd 9893 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  <_  ( A +e A ) )
154 simpr 110 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  = -oo )
155 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  B  = -oo )
156154, 155eqtr4d 2232 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  =  B )
157156, 156oveq12d 5943 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  =  ( B +e B ) )
158153, 157breqtrd 4060 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  <_  ( B +e B ) )
159150, 1582thd 175 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
16074ad2antrr 488 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
161135, 149, 159, 160mpjao3dan 1318 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  <_  B 
<->  ( A +e
A )  <_  ( B +e B ) ) )
162 elxr 9868 . . . 4  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
163162biimpi 120 . . 3  |-  ( B  e.  RR*  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
164163adantl 277 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
16576, 96, 161, 164mpjao3dan 1318 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896    + caddc 7899    x. cmul 7901   +oocpnf 8075   -oocmnf 8076   RR*cxr 8077    < clt 8078    <_ cle 8079   2c2 9058   +ecxad 9862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-2 9066  df-xadd 9865
This theorem is referenced by:  psmetge0  14651  xmetge0  14685
  Copyright terms: Public domain W3C validator