| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xleaddadd | Unicode version | ||
| Description: Cancelling a factor of
two in  | 
| Ref | Expression | 
|---|---|
| xleaddadd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | recn 8012 | 
. . . . . . 7
 | |
| 2 | 1 | adantl 277 | 
. . . . . 6
 | 
| 3 | 2 | 2timesd 9234 | 
. . . . 5
 | 
| 4 | recn 8012 | 
. . . . . . 7
 | |
| 5 | 4 | ad2antlr 489 | 
. . . . . 6
 | 
| 6 | 5 | 2timesd 9234 | 
. . . . 5
 | 
| 7 | 3, 6 | breq12d 4046 | 
. . . 4
 | 
| 8 | simpr 110 | 
. . . . 5
 | |
| 9 | simplr 528 | 
. . . . 5
 | |
| 10 | 2re 9060 | 
. . . . . 6
 | |
| 11 | 10 | a1i 9 | 
. . . . 5
 | 
| 12 | 2pos 9081 | 
. . . . . 6
 | |
| 13 | 12 | a1i 9 | 
. . . . 5
 | 
| 14 | lemul2 8884 | 
. . . . 5
 | |
| 15 | 8, 9, 11, 13, 14 | syl112anc 1253 | 
. . . 4
 | 
| 16 | 8, 8 | rexaddd 9929 | 
. . . . 5
 | 
| 17 | 9, 9 | rexaddd 9929 | 
. . . . 5
 | 
| 18 | 16, 17 | breq12d 4046 | 
. . . 4
 | 
| 19 | 7, 15, 18 | 3bitr4d 220 | 
. . 3
 | 
| 20 | renepnf 8074 | 
. . . . . . . 8
 | |
| 21 | 20 | neneqd 2388 | 
. . . . . . 7
 | 
| 22 | 21 | ad2antlr 489 | 
. . . . . 6
 | 
| 23 | xgepnf 9891 | 
. . . . . . 7
 | |
| 24 | 23 | ad3antlr 493 | 
. . . . . 6
 | 
| 25 | 22, 24 | mtbird 674 | 
. . . . 5
 | 
| 26 | breq1 4036 | 
. . . . . 6
 | |
| 27 | 26 | adantl 277 | 
. . . . 5
 | 
| 28 | 25, 27 | mtbird 674 | 
. . . 4
 | 
| 29 | simplr 528 | 
. . . . . . . . 9
 | |
| 30 | 29, 29 | rexaddd 9929 | 
. . . . . . . 8
 | 
| 31 | 29, 29 | readdcld 8056 | 
. . . . . . . 8
 | 
| 32 | 30, 31 | eqeltrd 2273 | 
. . . . . . 7
 | 
| 33 | renepnf 8074 | 
. . . . . . . 8
 | |
| 34 | 33 | neneqd 2388 | 
. . . . . . 7
 | 
| 35 | 32, 34 | syl 14 | 
. . . . . 6
 | 
| 36 | simpllr 534 | 
. . . . . . . 8
 | |
| 37 | 36, 36 | xaddcld 9959 | 
. . . . . . 7
 | 
| 38 | xgepnf 9891 | 
. . . . . . 7
 | |
| 39 | 37, 38 | syl 14 | 
. . . . . 6
 | 
| 40 | 35, 39 | mtbird 674 | 
. . . . 5
 | 
| 41 | simpr 110 | 
. . . . . . . 8
 | |
| 42 | 41, 41 | oveq12d 5940 | 
. . . . . . 7
 | 
| 43 | pnfxr 8079 | 
. . . . . . . 8
 | |
| 44 | pnfnemnf 8081 | 
. . . . . . . 8
 | |
| 45 | xaddpnf2 9922 | 
. . . . . . . 8
 | |
| 46 | 43, 44, 45 | mp2an 426 | 
. . . . . . 7
 | 
| 47 | 42, 46 | eqtrdi 2245 | 
. . . . . 6
 | 
| 48 | 47 | breq1d 4043 | 
. . . . 5
 | 
| 49 | 40, 48 | mtbird 674 | 
. . . 4
 | 
| 50 | 28, 49 | 2falsed 703 | 
. . 3
 | 
| 51 | mnfle 9867 | 
. . . . . 6
 | |
| 52 | 51 | ad3antlr 493 | 
. . . . 5
 | 
| 53 | breq1 4036 | 
. . . . . 6
 | |
| 54 | 53 | adantl 277 | 
. . . . 5
 | 
| 55 | 52, 54 | mpbird 167 | 
. . . 4
 | 
| 56 | oveq1 5929 | 
. . . . . . 7
 | |
| 57 | 56 | adantl 277 | 
. . . . . 6
 | 
| 58 | simplll 533 | 
. . . . . . 7
 | |
| 59 | mnfnepnf 8082 | 
. . . . . . . . 9
 | |
| 60 | neeq1 2380 | 
. . . . . . . . 9
 | |
| 61 | 59, 60 | mpbiri 168 | 
. . . . . . . 8
 | 
| 62 | 61 | adantl 277 | 
. . . . . . 7
 | 
| 63 | xaddmnf2 9924 | 
. . . . . . 7
 | |
| 64 | 58, 62, 63 | syl2anc 411 | 
. . . . . 6
 | 
| 65 | 57, 64 | eqtrd 2229 | 
. . . . 5
 | 
| 66 | simpr 110 | 
. . . . . . . 8
 | |
| 67 | 66, 66 | xaddcld 9959 | 
. . . . . . 7
 | 
| 68 | 67 | ad2antrr 488 | 
. . . . . 6
 | 
| 69 | mnfle 9867 | 
. . . . . 6
 | |
| 70 | 68, 69 | syl 14 | 
. . . . 5
 | 
| 71 | 65, 70 | eqbrtrd 4055 | 
. . . 4
 | 
| 72 | 55, 71 | 2thd 175 | 
. . 3
 | 
| 73 | elxr 9851 | 
. . . . 5
 | |
| 74 | 73 | biimpi 120 | 
. . . 4
 | 
| 75 | 74 | ad2antrr 488 | 
. . 3
 | 
| 76 | 19, 50, 72, 75 | mpjao3dan 1318 | 
. 2
 | 
| 77 | pnfge 9864 | 
. . . . 5
 | |
| 78 | 77 | ad2antrr 488 | 
. . . 4
 | 
| 79 | breq2 4037 | 
. . . . 5
 | |
| 80 | 79 | adantl 277 | 
. . . 4
 | 
| 81 | 78, 80 | mpbird 167 | 
. . 3
 | 
| 82 | simpll 527 | 
. . . . . 6
 | |
| 83 | 82, 82 | xaddcld 9959 | 
. . . . 5
 | 
| 84 | pnfge 9864 | 
. . . . 5
 | |
| 85 | 83, 84 | syl 14 | 
. . . 4
 | 
| 86 | oveq1 5929 | 
. . . . . 6
 | |
| 87 | eleq1 2259 | 
. . . . . . . 8
 | |
| 88 | 43, 87 | mpbiri 168 | 
. . . . . . 7
 | 
| 89 | neeq1 2380 | 
. . . . . . . 8
 | |
| 90 | 44, 89 | mpbiri 168 | 
. . . . . . 7
 | 
| 91 | xaddpnf2 9922 | 
. . . . . . 7
 | |
| 92 | 88, 90, 91 | syl2anc 411 | 
. . . . . 6
 | 
| 93 | 86, 92 | eqtrd 2229 | 
. . . . 5
 | 
| 94 | 93 | adantl 277 | 
. . . 4
 | 
| 95 | 85, 94 | breqtrrd 4061 | 
. . 3
 | 
| 96 | 81, 95 | 2thd 175 | 
. 2
 | 
| 97 | simpr 110 | 
. . . . . . 7
 | |
| 98 | 97 | renemnfd 8078 | 
. . . . . 6
 | 
| 99 | 98 | neneqd 2388 | 
. . . . 5
 | 
| 100 | ngtmnft 9892 | 
. . . . . . . . 9
 | |
| 101 | mnfxr 8083 | 
. . . . . . . . . 10
 | |
| 102 | xrlenlt 8091 | 
. . . . . . . . . 10
 | |
| 103 | 101, 102 | mpan2 425 | 
. . . . . . . . 9
 | 
| 104 | 100, 103 | bitr4d 191 | 
. . . . . . . 8
 | 
| 105 | 104 | ad2antrr 488 | 
. . . . . . 7
 | 
| 106 | breq2 4037 | 
. . . . . . . 8
 | |
| 107 | 106 | adantl 277 | 
. . . . . . 7
 | 
| 108 | 105, 107 | bitr4d 191 | 
. . . . . 6
 | 
| 109 | 108 | adantr 276 | 
. . . . 5
 | 
| 110 | 99, 109 | mtbid 673 | 
. . . 4
 | 
| 111 | 97, 97 | rexaddd 9929 | 
. . . . . . . 8
 | 
| 112 | 97, 97 | readdcld 8056 | 
. . . . . . . 8
 | 
| 113 | 111, 112 | eqeltrd 2273 | 
. . . . . . 7
 | 
| 114 | 113 | renemnfd 8078 | 
. . . . . 6
 | 
| 115 | 114 | neneqd 2388 | 
. . . . 5
 | 
| 116 | simpll 527 | 
. . . . . . . . 9
 | |
| 117 | 116, 116 | xaddcld 9959 | 
. . . . . . . 8
 | 
| 118 | xrlenlt 8091 | 
. . . . . . . . 9
 | |
| 119 | 101, 118 | mpan2 425 | 
. . . . . . . 8
 | 
| 120 | 117, 119 | syl 14 | 
. . . . . . 7
 | 
| 121 | oveq2 5930 | 
. . . . . . . . . 10
 | |
| 122 | eleq1 2259 | 
. . . . . . . . . . . 12
 | |
| 123 | 101, 122 | mpbiri 168 | 
. . . . . . . . . . 11
 | 
| 124 | 90 | necon2i 2423 | 
. . . . . . . . . . 11
 | 
| 125 | xaddmnf1 9923 | 
. . . . . . . . . . 11
 | |
| 126 | 123, 124, 125 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 127 | 121, 126 | eqtrd 2229 | 
. . . . . . . . 9
 | 
| 128 | 127 | adantl 277 | 
. . . . . . . 8
 | 
| 129 | 128 | breq2d 4045 | 
. . . . . . 7
 | 
| 130 | ngtmnft 9892 | 
. . . . . . . 8
 | |
| 131 | 117, 130 | syl 14 | 
. . . . . . 7
 | 
| 132 | 120, 129, 131 | 3bitr4rd 221 | 
. . . . . 6
 | 
| 133 | 132 | adantr 276 | 
. . . . 5
 | 
| 134 | 115, 133 | mtbid 673 | 
. . . 4
 | 
| 135 | 110, 134 | 2falsed 703 | 
. . 3
 | 
| 136 | 44 | neii 2369 | 
. . . . . 6
 | 
| 137 | eqeq1 2203 | 
. . . . . . 7
 | |
| 138 | 137 | adantl 277 | 
. . . . . 6
 | 
| 139 | 136, 138 | mtbiri 676 | 
. . . . 5
 | 
| 140 | 108 | adantr 276 | 
. . . . 5
 | 
| 141 | 139, 140 | mtbid 673 | 
. . . 4
 | 
| 142 | simplll 533 | 
. . . . . . 7
 | |
| 143 | 139 | neqned 2374 | 
. . . . . . 7
 | 
| 144 | xaddnemnf 9932 | 
. . . . . . 7
 | |
| 145 | 142, 143, 142, 143, 144 | syl22anc 1250 | 
. . . . . 6
 | 
| 146 | 145 | neneqd 2388 | 
. . . . 5
 | 
| 147 | 132 | adantr 276 | 
. . . . 5
 | 
| 148 | 146, 147 | mtbid 673 | 
. . . 4
 | 
| 149 | 141, 148 | 2falsed 703 | 
. . 3
 | 
| 150 | 108 | biimpa 296 | 
. . . 4
 | 
| 151 | simplll 533 | 
. . . . . . 7
 | |
| 152 | 151, 151 | xaddcld 9959 | 
. . . . . 6
 | 
| 153 | 152 | xrleidd 9876 | 
. . . . 5
 | 
| 154 | simpr 110 | 
. . . . . . 7
 | |
| 155 | simplr 528 | 
. . . . . . 7
 | |
| 156 | 154, 155 | eqtr4d 2232 | 
. . . . . 6
 | 
| 157 | 156, 156 | oveq12d 5940 | 
. . . . 5
 | 
| 158 | 153, 157 | breqtrd 4059 | 
. . . 4
 | 
| 159 | 150, 158 | 2thd 175 | 
. . 3
 | 
| 160 | 74 | ad2antrr 488 | 
. . 3
 | 
| 161 | 135, 149, 159, 160 | mpjao3dan 1318 | 
. 2
 | 
| 162 | elxr 9851 | 
. . . 4
 | |
| 163 | 162 | biimpi 120 | 
. . 3
 | 
| 164 | 163 | adantl 277 | 
. 2
 | 
| 165 | 76, 96, 161, 164 | mpjao3dan 1318 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-2 9049 df-xadd 9848 | 
| This theorem is referenced by: psmetge0 14567 xmetge0 14601 | 
| Copyright terms: Public domain | W3C validator |