ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xleaddadd Unicode version

Theorem xleaddadd 9638
Description: Cancelling a factor of two in  <_ (expressed as addition rather than as a factor to avoid extended real multiplication). (Contributed by Jim Kingdon, 18-Apr-2023.)
Assertion
Ref Expression
xleaddadd  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )

Proof of Theorem xleaddadd
StepHypRef Expression
1 recn 7721 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
21adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  A  e.  CC )
322timesd 8930 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
2  x.  A )  =  ( A  +  A ) )
4 recn 7721 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
54ad2antlr 480 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  B  e.  CC )
652timesd 8930 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
2  x.  B )  =  ( B  +  B ) )
73, 6breq12d 3912 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
( 2  x.  A
)  <_  ( 2  x.  B )  <->  ( A  +  A )  <_  ( B  +  B )
) )
8 simpr 109 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  A  e.  RR )
9 simplr 504 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  B  e.  RR )
10 2re 8758 . . . . . 6  |-  2  e.  RR
1110a1i 9 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  2  e.  RR )
12 2pos 8779 . . . . . 6  |-  0  <  2
1312a1i 9 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <  2 )
14 lemul2 8583 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  <_  B 
<->  ( 2  x.  A
)  <_  ( 2  x.  B ) ) )
158, 9, 11, 13, 14syl112anc 1205 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A  <_  B  <->  ( 2  x.  A )  <_ 
( 2  x.  B
) ) )
168, 8rexaddd 9605 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A +e A )  =  ( A  +  A ) )
179, 9rexaddd 9605 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( B +e B )  =  ( B  +  B ) )
1816, 17breq12d 3912 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
( A +e
A )  <_  ( B +e B )  <-> 
( A  +  A
)  <_  ( B  +  B ) ) )
197, 15, 183bitr4d 219 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
20 renepnf 7781 . . . . . . . 8  |-  ( B  e.  RR  ->  B  =/= +oo )
2120neneqd 2306 . . . . . . 7  |-  ( B  e.  RR  ->  -.  B  = +oo )
2221ad2antlr 480 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  B  = +oo )
23 xgepnf 9567 . . . . . . 7  |-  ( B  e.  RR*  ->  ( +oo  <_  B  <->  B  = +oo ) )
2423ad3antlr 484 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( +oo  <_  B  <->  B  = +oo ) )
2522, 24mtbird 647 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -. +oo 
<_  B )
26 breq1 3902 . . . . . 6  |-  ( A  = +oo  ->  ( A  <_  B  <-> +oo  <_  B
) )
2726adantl 275 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A  <_  B  <-> +oo  <_  B
) )
2825, 27mtbird 647 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  A  <_  B )
29 simplr 504 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR )
3029, 29rexaddd 9605 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B +e B )  =  ( B  +  B ) )
3129, 29readdcld 7763 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B  +  B )  e.  RR )
3230, 31eqeltrd 2194 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B +e B )  e.  RR )
33 renepnf 7781 . . . . . . . 8  |-  ( ( B +e B )  e.  RR  ->  ( B +e B )  =/= +oo )
3433neneqd 2306 . . . . . . 7  |-  ( ( B +e B )  e.  RR  ->  -.  ( B +e
B )  = +oo )
3532, 34syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  ( B +e B )  = +oo )
36 simpllr 508 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR* )
3736, 36xaddcld 9635 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B +e B )  e.  RR* )
38 xgepnf 9567 . . . . . . 7  |-  ( ( B +e B )  e.  RR*  ->  ( +oo  <_  ( B +e B )  <-> 
( B +e
B )  = +oo ) )
3937, 38syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( +oo  <_  ( B +e B )  <->  ( B +e B )  = +oo ) )
4035, 39mtbird 647 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -. +oo 
<_  ( B +e
B ) )
41 simpr 109 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
4241, 41oveq12d 5760 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e A )  =  ( +oo +e +oo ) )
43 pnfxr 7786 . . . . . . . 8  |- +oo  e.  RR*
44 pnfnemnf 7788 . . . . . . . 8  |- +oo  =/= -oo
45 xaddpnf2 9598 . . . . . . . 8  |-  ( ( +oo  e.  RR*  /\ +oo  =/= -oo )  ->  ( +oo +e +oo )  = +oo )
4643, 44, 45mp2an 422 . . . . . . 7  |-  ( +oo +e +oo )  = +oo
4742, 46syl6eq 2166 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e A )  = +oo )
4847breq1d 3909 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  (
( A +e
A )  <_  ( B +e B )  <-> +oo  <_  ( B +e B ) ) )
4940, 48mtbird 647 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  ( A +e A )  <_  ( B +e B ) )
5028, 492falsed 676 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
51 mnfle 9546 . . . . . 6  |-  ( B  e.  RR*  -> -oo  <_  B )
5251ad3antlr 484 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  -> -oo  <_  B )
53 breq1 3902 . . . . . 6  |-  ( A  = -oo  ->  ( A  <_  B  <-> -oo  <_  B
) )
5453adantl 275 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A  <_  B  <-> -oo  <_  B
) )
5552, 54mpbird 166 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  <_  B )
56 oveq1 5749 . . . . . . 7  |-  ( A  = -oo  ->  ( A +e A )  =  ( -oo +e A ) )
5756adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e A )  =  ( -oo +e A ) )
58 simplll 507 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  e.  RR* )
59 mnfnepnf 7789 . . . . . . . . 9  |- -oo  =/= +oo
60 neeq1 2298 . . . . . . . . 9  |-  ( A  = -oo  ->  ( A  =/= +oo  <-> -oo  =/= +oo )
)
6159, 60mpbiri 167 . . . . . . . 8  |-  ( A  = -oo  ->  A  =/= +oo )
6261adantl 275 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  =/= +oo )
63 xaddmnf2 9600 . . . . . . 7  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( -oo +e A )  = -oo )
6458, 62, 63syl2anc 408 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( -oo +e A )  = -oo )
6557, 64eqtrd 2150 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e A )  = -oo )
66 simpr 109 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  e.  RR* )
6766, 66xaddcld 9635 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B +e B )  e.  RR* )
6867ad2antrr 479 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( B +e B )  e.  RR* )
69 mnfle 9546 . . . . . 6  |-  ( ( B +e B )  e.  RR*  -> -oo 
<_  ( B +e
B ) )
7068, 69syl 14 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  -> -oo  <_  ( B +e B ) )
7165, 70eqbrtrd 3920 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e A )  <_  ( B +e B ) )
7255, 712thd 174 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
73 elxr 9531 . . . . 5  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7473biimpi 119 . . . 4  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7574ad2antrr 479 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7619, 50, 72, 75mpjao3dan 1270 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  e.  RR )  ->  ( A  <_  B 
<->  ( A +e
A )  <_  ( B +e B ) ) )
77 pnfge 9543 . . . . 5  |-  ( A  e.  RR*  ->  A  <_ +oo )
7877ad2antrr 479 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  A  <_ +oo )
79 breq2 3903 . . . . 5  |-  ( B  = +oo  ->  ( A  <_  B  <->  A  <_ +oo ) )
8079adantl 275 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A  <_  B 
<->  A  <_ +oo )
)
8178, 80mpbird 166 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  A  <_  B
)
82 simpll 503 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  A  e.  RR* )
8382, 82xaddcld 9635 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A +e A )  e. 
RR* )
84 pnfge 9543 . . . . 5  |-  ( ( A +e A )  e.  RR*  ->  ( A +e A )  <_ +oo )
8583, 84syl 14 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A +e A )  <_ +oo )
86 oveq1 5749 . . . . . 6  |-  ( B  = +oo  ->  ( B +e B )  =  ( +oo +e B ) )
87 eleq1 2180 . . . . . . . 8  |-  ( B  = +oo  ->  ( B  e.  RR*  <-> +oo  e.  RR* ) )
8843, 87mpbiri 167 . . . . . . 7  |-  ( B  = +oo  ->  B  e.  RR* )
89 neeq1 2298 . . . . . . . 8  |-  ( B  = +oo  ->  ( B  =/= -oo  <-> +oo  =/= -oo )
)
9044, 89mpbiri 167 . . . . . . 7  |-  ( B  = +oo  ->  B  =/= -oo )
91 xaddpnf2 9598 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
9288, 90, 91syl2anc 408 . . . . . 6  |-  ( B  = +oo  ->  ( +oo +e B )  = +oo )
9386, 92eqtrd 2150 . . . . 5  |-  ( B  = +oo  ->  ( B +e B )  = +oo )
9493adantl 275 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( B +e B )  = +oo )
9585, 94breqtrrd 3926 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A +e A )  <_ 
( B +e
B ) )
9681, 952thd 174 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A  <_  B 
<->  ( A +e
A )  <_  ( B +e B ) ) )
97 simpr 109 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  A  e.  RR )
9897renemnfd 7785 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  A  =/= -oo )
9998neneqd 2306 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  A  = -oo )
100 ngtmnft 9568 . . . . . . . . 9  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo  <  A ) )
101 mnfxr 7790 . . . . . . . . . 10  |- -oo  e.  RR*
102 xrlenlt 7797 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\ -oo  e.  RR* )  ->  ( A  <_ -oo  <->  -. -oo  <  A
) )
103101, 102mpan2 421 . . . . . . . . 9  |-  ( A  e.  RR*  ->  ( A  <_ -oo  <->  -. -oo  <  A
) )
104100, 103bitr4d 190 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  A  <_ -oo ) )
105104ad2antrr 479 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  = -oo  <->  A  <_ -oo )
)
106 breq2 3903 . . . . . . . 8  |-  ( B  = -oo  ->  ( A  <_  B  <->  A  <_ -oo ) )
107106adantl 275 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  <_  B 
<->  A  <_ -oo )
)
108105, 107bitr4d 190 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  = -oo  <->  A  <_  B ) )
109108adantr 274 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A  = -oo  <->  A  <_  B ) )
11099, 109mtbid 646 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  A  <_  B )
11197, 97rexaddd 9605 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A +e A )  =  ( A  +  A ) )
11297, 97readdcld 7763 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A  +  A )  e.  RR )
113111, 112eqeltrd 2194 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A +e A )  e.  RR )
114113renemnfd 7785 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A +e A )  =/= -oo )
115114neneqd 2306 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  ( A +e A )  = -oo )
116 simpll 503 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  A  e.  RR* )
117116, 116xaddcld 9635 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A +e A )  e. 
RR* )
118 xrlenlt 7797 . . . . . . . . 9  |-  ( ( ( A +e
A )  e.  RR*  /\ -oo  e.  RR* )  ->  (
( A +e
A )  <_ -oo  <->  -. -oo  <  ( A +e A ) ) )
119101, 118mpan2 421 . . . . . . . 8  |-  ( ( A +e A )  e.  RR*  ->  ( ( A +e
A )  <_ -oo  <->  -. -oo  <  ( A +e A ) ) )
120117, 119syl 14 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  <_ -oo  <->  -. -oo  <  ( A +e A ) ) )
121 oveq2 5750 . . . . . . . . . 10  |-  ( B  = -oo  ->  ( B +e B )  =  ( B +e -oo ) )
122 eleq1 2180 . . . . . . . . . . . 12  |-  ( B  = -oo  ->  ( B  e.  RR*  <-> -oo  e.  RR* ) )
123101, 122mpbiri 167 . . . . . . . . . . 11  |-  ( B  = -oo  ->  B  e.  RR* )
12490necon2i 2341 . . . . . . . . . . 11  |-  ( B  = -oo  ->  B  =/= +oo )
125 xaddmnf1 9599 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( B +e -oo )  = -oo )
126123, 124, 125syl2anc 408 . . . . . . . . . 10  |-  ( B  = -oo  ->  ( B +e -oo )  = -oo )
127121, 126eqtrd 2150 . . . . . . . . 9  |-  ( B  = -oo  ->  ( B +e B )  = -oo )
128127adantl 275 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( B +e B )  = -oo )
129128breq2d 3911 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  <_  ( B +e B )  <->  ( A +e A )  <_ -oo ) )
130 ngtmnft 9568 . . . . . . . 8  |-  ( ( A +e A )  e.  RR*  ->  ( ( A +e
A )  = -oo  <->  -. -oo 
<  ( A +e A ) ) )
131117, 130syl 14 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  = -oo  <->  -. -oo  <  ( A +e A ) ) )
132120, 129, 1313bitr4rd 220 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  = -oo  <->  ( A +e A )  <_  ( B +e B ) ) )
133132adantr 274 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  (
( A +e
A )  = -oo  <->  ( A +e A )  <_  ( B +e B ) ) )
134115, 133mtbid 646 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  ( A +e A )  <_  ( B +e B ) )
135110, 1342falsed 676 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
13644neii 2287 . . . . . 6  |-  -. +oo  = -oo
137 eqeq1 2124 . . . . . . 7  |-  ( A  = +oo  ->  ( A  = -oo  <-> +oo  = -oo ) )
138137adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A  = -oo  <-> +oo  = -oo ) )
139136, 138mtbiri 649 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  A  = -oo )
140108adantr 274 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A  = -oo  <->  A  <_  B ) )
141139, 140mtbid 646 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  A  <_  B )
142 simplll 507 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  A  e.  RR* )
143139neqned 2292 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  A  =/= -oo )
144 xaddnemnf 9608 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( A  e.  RR*  /\  A  =/= -oo )
)  ->  ( A +e A )  =/= -oo )
145142, 143, 142, 143, 144syl22anc 1202 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A +e A )  =/= -oo )
146145neneqd 2306 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  ( A +e A )  = -oo )
147132adantr 274 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  (
( A +e
A )  = -oo  <->  ( A +e A )  <_  ( B +e B ) ) )
148146, 147mtbid 646 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  ( A +e A )  <_  ( B +e B ) )
149141, 1482falsed 676 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
150108biimpa 294 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  <_  B )
151 simplll 507 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  e.  RR* )
152151, 151xaddcld 9635 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  e.  RR* )
153152xrleidd 9555 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  <_  ( A +e A ) )
154 simpr 109 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  = -oo )
155 simplr 504 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  B  = -oo )
156154, 155eqtr4d 2153 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  =  B )
157156, 156oveq12d 5760 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  =  ( B +e B ) )
158153, 157breqtrd 3924 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  <_  ( B +e B ) )
159150, 1582thd 174 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
16074ad2antrr 479 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
161135, 149, 159, 160mpjao3dan 1270 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  <_  B 
<->  ( A +e
A )  <_  ( B +e B ) ) )
162 elxr 9531 . . . 4  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
163162biimpi 119 . . 3  |-  ( B  e.  RR*  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
164163adantl 275 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
16576, 96, 161, 164mpjao3dan 1270 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 946    = wceq 1316    e. wcel 1465    =/= wne 2285   class class class wbr 3899  (class class class)co 5742   CCcc 7586   RRcr 7587   0cc0 7588    + caddc 7591    x. cmul 7593   +oocpnf 7765   -oocmnf 7766   RR*cxr 7767    < clt 7768    <_ cle 7769   2c2 8739   +ecxad 9525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-lttrn 7702  ax-pre-ltadd 7704  ax-pre-mulgt0 7705
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-2 8747  df-xadd 9528
This theorem is referenced by:  psmetge0  12427  xmetge0  12461
  Copyright terms: Public domain W3C validator