Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xleaddadd | Unicode version |
Description: Cancelling a factor of two in (expressed as addition rather than as a factor to avoid extended real multiplication). (Contributed by Jim Kingdon, 18-Apr-2023.) |
Ref | Expression |
---|---|
xleaddadd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 7907 | . . . . . . 7 | |
2 | 1 | adantl 275 | . . . . . 6 |
3 | 2 | 2timesd 9120 | . . . . 5 |
4 | recn 7907 | . . . . . . 7 | |
5 | 4 | ad2antlr 486 | . . . . . 6 |
6 | 5 | 2timesd 9120 | . . . . 5 |
7 | 3, 6 | breq12d 4002 | . . . 4 |
8 | simpr 109 | . . . . 5 | |
9 | simplr 525 | . . . . 5 | |
10 | 2re 8948 | . . . . . 6 | |
11 | 10 | a1i 9 | . . . . 5 |
12 | 2pos 8969 | . . . . . 6 | |
13 | 12 | a1i 9 | . . . . 5 |
14 | lemul2 8773 | . . . . 5 | |
15 | 8, 9, 11, 13, 14 | syl112anc 1237 | . . . 4 |
16 | 8, 8 | rexaddd 9811 | . . . . 5 |
17 | 9, 9 | rexaddd 9811 | . . . . 5 |
18 | 16, 17 | breq12d 4002 | . . . 4 |
19 | 7, 15, 18 | 3bitr4d 219 | . . 3 |
20 | renepnf 7967 | . . . . . . . 8 | |
21 | 20 | neneqd 2361 | . . . . . . 7 |
22 | 21 | ad2antlr 486 | . . . . . 6 |
23 | xgepnf 9773 | . . . . . . 7 | |
24 | 23 | ad3antlr 490 | . . . . . 6 |
25 | 22, 24 | mtbird 668 | . . . . 5 |
26 | breq1 3992 | . . . . . 6 | |
27 | 26 | adantl 275 | . . . . 5 |
28 | 25, 27 | mtbird 668 | . . . 4 |
29 | simplr 525 | . . . . . . . . 9 | |
30 | 29, 29 | rexaddd 9811 | . . . . . . . 8 |
31 | 29, 29 | readdcld 7949 | . . . . . . . 8 |
32 | 30, 31 | eqeltrd 2247 | . . . . . . 7 |
33 | renepnf 7967 | . . . . . . . 8 | |
34 | 33 | neneqd 2361 | . . . . . . 7 |
35 | 32, 34 | syl 14 | . . . . . 6 |
36 | simpllr 529 | . . . . . . . 8 | |
37 | 36, 36 | xaddcld 9841 | . . . . . . 7 |
38 | xgepnf 9773 | . . . . . . 7 | |
39 | 37, 38 | syl 14 | . . . . . 6 |
40 | 35, 39 | mtbird 668 | . . . . 5 |
41 | simpr 109 | . . . . . . . 8 | |
42 | 41, 41 | oveq12d 5871 | . . . . . . 7 |
43 | pnfxr 7972 | . . . . . . . 8 | |
44 | pnfnemnf 7974 | . . . . . . . 8 | |
45 | xaddpnf2 9804 | . . . . . . . 8 | |
46 | 43, 44, 45 | mp2an 424 | . . . . . . 7 |
47 | 42, 46 | eqtrdi 2219 | . . . . . 6 |
48 | 47 | breq1d 3999 | . . . . 5 |
49 | 40, 48 | mtbird 668 | . . . 4 |
50 | 28, 49 | 2falsed 697 | . . 3 |
51 | mnfle 9749 | . . . . . 6 | |
52 | 51 | ad3antlr 490 | . . . . 5 |
53 | breq1 3992 | . . . . . 6 | |
54 | 53 | adantl 275 | . . . . 5 |
55 | 52, 54 | mpbird 166 | . . . 4 |
56 | oveq1 5860 | . . . . . . 7 | |
57 | 56 | adantl 275 | . . . . . 6 |
58 | simplll 528 | . . . . . . 7 | |
59 | mnfnepnf 7975 | . . . . . . . . 9 | |
60 | neeq1 2353 | . . . . . . . . 9 | |
61 | 59, 60 | mpbiri 167 | . . . . . . . 8 |
62 | 61 | adantl 275 | . . . . . . 7 |
63 | xaddmnf2 9806 | . . . . . . 7 | |
64 | 58, 62, 63 | syl2anc 409 | . . . . . 6 |
65 | 57, 64 | eqtrd 2203 | . . . . 5 |
66 | simpr 109 | . . . . . . . 8 | |
67 | 66, 66 | xaddcld 9841 | . . . . . . 7 |
68 | 67 | ad2antrr 485 | . . . . . 6 |
69 | mnfle 9749 | . . . . . 6 | |
70 | 68, 69 | syl 14 | . . . . 5 |
71 | 65, 70 | eqbrtrd 4011 | . . . 4 |
72 | 55, 71 | 2thd 174 | . . 3 |
73 | elxr 9733 | . . . . 5 | |
74 | 73 | biimpi 119 | . . . 4 |
75 | 74 | ad2antrr 485 | . . 3 |
76 | 19, 50, 72, 75 | mpjao3dan 1302 | . 2 |
77 | pnfge 9746 | . . . . 5 | |
78 | 77 | ad2antrr 485 | . . . 4 |
79 | breq2 3993 | . . . . 5 | |
80 | 79 | adantl 275 | . . . 4 |
81 | 78, 80 | mpbird 166 | . . 3 |
82 | simpll 524 | . . . . . 6 | |
83 | 82, 82 | xaddcld 9841 | . . . . 5 |
84 | pnfge 9746 | . . . . 5 | |
85 | 83, 84 | syl 14 | . . . 4 |
86 | oveq1 5860 | . . . . . 6 | |
87 | eleq1 2233 | . . . . . . . 8 | |
88 | 43, 87 | mpbiri 167 | . . . . . . 7 |
89 | neeq1 2353 | . . . . . . . 8 | |
90 | 44, 89 | mpbiri 167 | . . . . . . 7 |
91 | xaddpnf2 9804 | . . . . . . 7 | |
92 | 88, 90, 91 | syl2anc 409 | . . . . . 6 |
93 | 86, 92 | eqtrd 2203 | . . . . 5 |
94 | 93 | adantl 275 | . . . 4 |
95 | 85, 94 | breqtrrd 4017 | . . 3 |
96 | 81, 95 | 2thd 174 | . 2 |
97 | simpr 109 | . . . . . . 7 | |
98 | 97 | renemnfd 7971 | . . . . . 6 |
99 | 98 | neneqd 2361 | . . . . 5 |
100 | ngtmnft 9774 | . . . . . . . . 9 | |
101 | mnfxr 7976 | . . . . . . . . . 10 | |
102 | xrlenlt 7984 | . . . . . . . . . 10 | |
103 | 101, 102 | mpan2 423 | . . . . . . . . 9 |
104 | 100, 103 | bitr4d 190 | . . . . . . . 8 |
105 | 104 | ad2antrr 485 | . . . . . . 7 |
106 | breq2 3993 | . . . . . . . 8 | |
107 | 106 | adantl 275 | . . . . . . 7 |
108 | 105, 107 | bitr4d 190 | . . . . . 6 |
109 | 108 | adantr 274 | . . . . 5 |
110 | 99, 109 | mtbid 667 | . . . 4 |
111 | 97, 97 | rexaddd 9811 | . . . . . . . 8 |
112 | 97, 97 | readdcld 7949 | . . . . . . . 8 |
113 | 111, 112 | eqeltrd 2247 | . . . . . . 7 |
114 | 113 | renemnfd 7971 | . . . . . 6 |
115 | 114 | neneqd 2361 | . . . . 5 |
116 | simpll 524 | . . . . . . . . 9 | |
117 | 116, 116 | xaddcld 9841 | . . . . . . . 8 |
118 | xrlenlt 7984 | . . . . . . . . 9 | |
119 | 101, 118 | mpan2 423 | . . . . . . . 8 |
120 | 117, 119 | syl 14 | . . . . . . 7 |
121 | oveq2 5861 | . . . . . . . . . 10 | |
122 | eleq1 2233 | . . . . . . . . . . . 12 | |
123 | 101, 122 | mpbiri 167 | . . . . . . . . . . 11 |
124 | 90 | necon2i 2396 | . . . . . . . . . . 11 |
125 | xaddmnf1 9805 | . . . . . . . . . . 11 | |
126 | 123, 124, 125 | syl2anc 409 | . . . . . . . . . 10 |
127 | 121, 126 | eqtrd 2203 | . . . . . . . . 9 |
128 | 127 | adantl 275 | . . . . . . . 8 |
129 | 128 | breq2d 4001 | . . . . . . 7 |
130 | ngtmnft 9774 | . . . . . . . 8 | |
131 | 117, 130 | syl 14 | . . . . . . 7 |
132 | 120, 129, 131 | 3bitr4rd 220 | . . . . . 6 |
133 | 132 | adantr 274 | . . . . 5 |
134 | 115, 133 | mtbid 667 | . . . 4 |
135 | 110, 134 | 2falsed 697 | . . 3 |
136 | 44 | neii 2342 | . . . . . 6 |
137 | eqeq1 2177 | . . . . . . 7 | |
138 | 137 | adantl 275 | . . . . . 6 |
139 | 136, 138 | mtbiri 670 | . . . . 5 |
140 | 108 | adantr 274 | . . . . 5 |
141 | 139, 140 | mtbid 667 | . . . 4 |
142 | simplll 528 | . . . . . . 7 | |
143 | 139 | neqned 2347 | . . . . . . 7 |
144 | xaddnemnf 9814 | . . . . . . 7 | |
145 | 142, 143, 142, 143, 144 | syl22anc 1234 | . . . . . 6 |
146 | 145 | neneqd 2361 | . . . . 5 |
147 | 132 | adantr 274 | . . . . 5 |
148 | 146, 147 | mtbid 667 | . . . 4 |
149 | 141, 148 | 2falsed 697 | . . 3 |
150 | 108 | biimpa 294 | . . . 4 |
151 | simplll 528 | . . . . . . 7 | |
152 | 151, 151 | xaddcld 9841 | . . . . . 6 |
153 | 152 | xrleidd 9758 | . . . . 5 |
154 | simpr 109 | . . . . . . 7 | |
155 | simplr 525 | . . . . . . 7 | |
156 | 154, 155 | eqtr4d 2206 | . . . . . 6 |
157 | 156, 156 | oveq12d 5871 | . . . . 5 |
158 | 153, 157 | breqtrd 4015 | . . . 4 |
159 | 150, 158 | 2thd 174 | . . 3 |
160 | 74 | ad2antrr 485 | . . 3 |
161 | 135, 149, 159, 160 | mpjao3dan 1302 | . 2 |
162 | elxr 9733 | . . . 4 | |
163 | 162 | biimpi 119 | . . 3 |
164 | 163 | adantl 275 | . 2 |
165 | 76, 96, 161, 164 | mpjao3dan 1302 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3o 972 wceq 1348 wcel 2141 wne 2340 class class class wbr 3989 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 caddc 7777 cmul 7779 cpnf 7951 cmnf 7952 cxr 7953 clt 7954 cle 7955 c2 8929 cxad 9727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-lttrn 7888 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-2 8937 df-xadd 9730 |
This theorem is referenced by: psmetge0 13125 xmetge0 13159 |
Copyright terms: Public domain | W3C validator |