ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xleaddadd Unicode version

Theorem xleaddadd 9511
Description: Cancelling a factor of two in  <_ (expressed as addition rather than as a factor to avoid extended real multiplication). (Contributed by Jim Kingdon, 18-Apr-2023.)
Assertion
Ref Expression
xleaddadd  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )

Proof of Theorem xleaddadd
StepHypRef Expression
1 recn 7625 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
21adantl 273 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  A  e.  CC )
322timesd 8814 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
2  x.  A )  =  ( A  +  A ) )
4 recn 7625 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
54ad2antlr 476 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  B  e.  CC )
652timesd 8814 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
2  x.  B )  =  ( B  +  B ) )
73, 6breq12d 3888 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
( 2  x.  A
)  <_  ( 2  x.  B )  <->  ( A  +  A )  <_  ( B  +  B )
) )
8 simpr 109 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  A  e.  RR )
9 simplr 500 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  B  e.  RR )
10 2re 8648 . . . . . 6  |-  2  e.  RR
1110a1i 9 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  2  e.  RR )
12 2pos 8669 . . . . . 6  |-  0  <  2
1312a1i 9 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <  2 )
14 lemul2 8473 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  <_  B 
<->  ( 2  x.  A
)  <_  ( 2  x.  B ) ) )
158, 9, 11, 13, 14syl112anc 1188 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A  <_  B  <->  ( 2  x.  A )  <_ 
( 2  x.  B
) ) )
168, 8rexaddd 9478 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A +e A )  =  ( A  +  A ) )
179, 9rexaddd 9478 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( B +e B )  =  ( B  +  B ) )
1816, 17breq12d 3888 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (
( A +e
A )  <_  ( B +e B )  <-> 
( A  +  A
)  <_  ( B  +  B ) ) )
197, 15, 183bitr4d 219 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
20 renepnf 7685 . . . . . . . 8  |-  ( B  e.  RR  ->  B  =/= +oo )
2120neneqd 2288 . . . . . . 7  |-  ( B  e.  RR  ->  -.  B  = +oo )
2221ad2antlr 476 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  B  = +oo )
23 xgepnf 9440 . . . . . . 7  |-  ( B  e.  RR*  ->  ( +oo  <_  B  <->  B  = +oo ) )
2423ad3antlr 480 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( +oo  <_  B  <->  B  = +oo ) )
2522, 24mtbird 639 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -. +oo 
<_  B )
26 breq1 3878 . . . . . 6  |-  ( A  = +oo  ->  ( A  <_  B  <-> +oo  <_  B
) )
2726adantl 273 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A  <_  B  <-> +oo  <_  B
) )
2825, 27mtbird 639 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  A  <_  B )
29 simplr 500 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR )
3029, 29rexaddd 9478 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B +e B )  =  ( B  +  B ) )
3129, 29readdcld 7667 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B  +  B )  e.  RR )
3230, 31eqeltrd 2176 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B +e B )  e.  RR )
33 renepnf 7685 . . . . . . . 8  |-  ( ( B +e B )  e.  RR  ->  ( B +e B )  =/= +oo )
3433neneqd 2288 . . . . . . 7  |-  ( ( B +e B )  e.  RR  ->  -.  ( B +e
B )  = +oo )
3532, 34syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  ( B +e B )  = +oo )
36 simpllr 504 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR* )
3736, 36xaddcld 9508 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( B +e B )  e.  RR* )
38 xgepnf 9440 . . . . . . 7  |-  ( ( B +e B )  e.  RR*  ->  ( +oo  <_  ( B +e B )  <-> 
( B +e
B )  = +oo ) )
3937, 38syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( +oo  <_  ( B +e B )  <->  ( B +e B )  = +oo ) )
4035, 39mtbird 639 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -. +oo 
<_  ( B +e
B ) )
41 simpr 109 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
4241, 41oveq12d 5724 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e A )  =  ( +oo +e +oo ) )
43 pnfxr 7690 . . . . . . . 8  |- +oo  e.  RR*
44 pnfnemnf 7692 . . . . . . . 8  |- +oo  =/= -oo
45 xaddpnf2 9471 . . . . . . . 8  |-  ( ( +oo  e.  RR*  /\ +oo  =/= -oo )  ->  ( +oo +e +oo )  = +oo )
4643, 44, 45mp2an 420 . . . . . . 7  |-  ( +oo +e +oo )  = +oo
4742, 46syl6eq 2148 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e A )  = +oo )
4847breq1d 3885 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  (
( A +e
A )  <_  ( B +e B )  <-> +oo  <_  ( B +e B ) ) )
4940, 48mtbird 639 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  ( A +e A )  <_  ( B +e B ) )
5028, 492falsed 659 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
51 mnfle 9419 . . . . . 6  |-  ( B  e.  RR*  -> -oo  <_  B )
5251ad3antlr 480 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  -> -oo  <_  B )
53 breq1 3878 . . . . . 6  |-  ( A  = -oo  ->  ( A  <_  B  <-> -oo  <_  B
) )
5453adantl 273 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A  <_  B  <-> -oo  <_  B
) )
5552, 54mpbird 166 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  <_  B )
56 oveq1 5713 . . . . . . 7  |-  ( A  = -oo  ->  ( A +e A )  =  ( -oo +e A ) )
5756adantl 273 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e A )  =  ( -oo +e A ) )
58 simplll 503 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  e.  RR* )
59 mnfnepnf 7693 . . . . . . . . 9  |- -oo  =/= +oo
60 neeq1 2280 . . . . . . . . 9  |-  ( A  = -oo  ->  ( A  =/= +oo  <-> -oo  =/= +oo )
)
6159, 60mpbiri 167 . . . . . . . 8  |-  ( A  = -oo  ->  A  =/= +oo )
6261adantl 273 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  =/= +oo )
63 xaddmnf2 9473 . . . . . . 7  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( -oo +e A )  = -oo )
6458, 62, 63syl2anc 406 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( -oo +e A )  = -oo )
6557, 64eqtrd 2132 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e A )  = -oo )
66 simpr 109 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  e.  RR* )
6766, 66xaddcld 9508 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B +e B )  e.  RR* )
6867ad2antrr 475 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( B +e B )  e.  RR* )
69 mnfle 9419 . . . . . 6  |-  ( ( B +e B )  e.  RR*  -> -oo 
<_  ( B +e
B ) )
7068, 69syl 14 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  -> -oo  <_  ( B +e B ) )
7165, 70eqbrtrd 3895 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e A )  <_  ( B +e B ) )
7255, 712thd 174 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
73 elxr 9404 . . . . 5  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7473biimpi 119 . . . 4  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7574ad2antrr 475 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7619, 50, 72, 75mpjao3dan 1253 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  e.  RR )  ->  ( A  <_  B 
<->  ( A +e
A )  <_  ( B +e B ) ) )
77 pnfge 9416 . . . . 5  |-  ( A  e.  RR*  ->  A  <_ +oo )
7877ad2antrr 475 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  A  <_ +oo )
79 breq2 3879 . . . . 5  |-  ( B  = +oo  ->  ( A  <_  B  <->  A  <_ +oo ) )
8079adantl 273 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A  <_  B 
<->  A  <_ +oo )
)
8178, 80mpbird 166 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  A  <_  B
)
82 simpll 499 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  A  e.  RR* )
8382, 82xaddcld 9508 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A +e A )  e. 
RR* )
84 pnfge 9416 . . . . 5  |-  ( ( A +e A )  e.  RR*  ->  ( A +e A )  <_ +oo )
8583, 84syl 14 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A +e A )  <_ +oo )
86 oveq1 5713 . . . . . 6  |-  ( B  = +oo  ->  ( B +e B )  =  ( +oo +e B ) )
87 eleq1 2162 . . . . . . . 8  |-  ( B  = +oo  ->  ( B  e.  RR*  <-> +oo  e.  RR* ) )
8843, 87mpbiri 167 . . . . . . 7  |-  ( B  = +oo  ->  B  e.  RR* )
89 neeq1 2280 . . . . . . . 8  |-  ( B  = +oo  ->  ( B  =/= -oo  <-> +oo  =/= -oo )
)
9044, 89mpbiri 167 . . . . . . 7  |-  ( B  = +oo  ->  B  =/= -oo )
91 xaddpnf2 9471 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
9288, 90, 91syl2anc 406 . . . . . 6  |-  ( B  = +oo  ->  ( +oo +e B )  = +oo )
9386, 92eqtrd 2132 . . . . 5  |-  ( B  = +oo  ->  ( B +e B )  = +oo )
9493adantl 273 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( B +e B )  = +oo )
9585, 94breqtrrd 3901 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A +e A )  <_ 
( B +e
B ) )
9681, 952thd 174 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = +oo )  ->  ( A  <_  B 
<->  ( A +e
A )  <_  ( B +e B ) ) )
97 simpr 109 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  A  e.  RR )
9897renemnfd 7689 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  A  =/= -oo )
9998neneqd 2288 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  A  = -oo )
100 ngtmnft 9441 . . . . . . . . 9  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo  <  A ) )
101 mnfxr 7694 . . . . . . . . . 10  |- -oo  e.  RR*
102 xrlenlt 7701 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\ -oo  e.  RR* )  ->  ( A  <_ -oo  <->  -. -oo  <  A
) )
103101, 102mpan2 419 . . . . . . . . 9  |-  ( A  e.  RR*  ->  ( A  <_ -oo  <->  -. -oo  <  A
) )
104100, 103bitr4d 190 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  A  <_ -oo ) )
105104ad2antrr 475 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  = -oo  <->  A  <_ -oo )
)
106 breq2 3879 . . . . . . . 8  |-  ( B  = -oo  ->  ( A  <_  B  <->  A  <_ -oo ) )
107106adantl 273 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  <_  B 
<->  A  <_ -oo )
)
108105, 107bitr4d 190 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  = -oo  <->  A  <_  B ) )
109108adantr 272 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A  = -oo  <->  A  <_  B ) )
11099, 109mtbid 638 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  A  <_  B )
11197, 97rexaddd 9478 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A +e A )  =  ( A  +  A ) )
11297, 97readdcld 7667 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A  +  A )  e.  RR )
113111, 112eqeltrd 2176 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A +e A )  e.  RR )
114113renemnfd 7689 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A +e A )  =/= -oo )
115114neneqd 2288 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  ( A +e A )  = -oo )
116 simpll 499 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  A  e.  RR* )
117116, 116xaddcld 9508 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A +e A )  e. 
RR* )
118 xrlenlt 7701 . . . . . . . . 9  |-  ( ( ( A +e
A )  e.  RR*  /\ -oo  e.  RR* )  ->  (
( A +e
A )  <_ -oo  <->  -. -oo  <  ( A +e A ) ) )
119101, 118mpan2 419 . . . . . . . 8  |-  ( ( A +e A )  e.  RR*  ->  ( ( A +e
A )  <_ -oo  <->  -. -oo  <  ( A +e A ) ) )
120117, 119syl 14 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  <_ -oo  <->  -. -oo  <  ( A +e A ) ) )
121 oveq2 5714 . . . . . . . . . 10  |-  ( B  = -oo  ->  ( B +e B )  =  ( B +e -oo ) )
122 eleq1 2162 . . . . . . . . . . . 12  |-  ( B  = -oo  ->  ( B  e.  RR*  <-> -oo  e.  RR* ) )
123101, 122mpbiri 167 . . . . . . . . . . 11  |-  ( B  = -oo  ->  B  e.  RR* )
12490necon2i 2323 . . . . . . . . . . 11  |-  ( B  = -oo  ->  B  =/= +oo )
125 xaddmnf1 9472 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( B +e -oo )  = -oo )
126123, 124, 125syl2anc 406 . . . . . . . . . 10  |-  ( B  = -oo  ->  ( B +e -oo )  = -oo )
127121, 126eqtrd 2132 . . . . . . . . 9  |-  ( B  = -oo  ->  ( B +e B )  = -oo )
128127adantl 273 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( B +e B )  = -oo )
129128breq2d 3887 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  <_  ( B +e B )  <->  ( A +e A )  <_ -oo ) )
130 ngtmnft 9441 . . . . . . . 8  |-  ( ( A +e A )  e.  RR*  ->  ( ( A +e
A )  = -oo  <->  -. -oo 
<  ( A +e A ) ) )
131117, 130syl 14 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  = -oo  <->  -. -oo  <  ( A +e A ) ) )
132120, 129, 1313bitr4rd 220 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( ( A +e A )  = -oo  <->  ( A +e A )  <_  ( B +e B ) ) )
133132adantr 272 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  (
( A +e
A )  = -oo  <->  ( A +e A )  <_  ( B +e B ) ) )
134115, 133mtbid 638 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  -.  ( A +e A )  <_  ( B +e B ) )
135110, 1342falsed 659 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  e.  RR )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
13644neii 2269 . . . . . 6  |-  -. +oo  = -oo
137 eqeq1 2106 . . . . . . 7  |-  ( A  = +oo  ->  ( A  = -oo  <-> +oo  = -oo ) )
138137adantl 273 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A  = -oo  <-> +oo  = -oo ) )
139136, 138mtbiri 641 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  A  = -oo )
140108adantr 272 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A  = -oo  <->  A  <_  B ) )
141139, 140mtbid 638 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  A  <_  B )
142 simplll 503 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  A  e.  RR* )
143139neqned 2274 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  A  =/= -oo )
144 xaddnemnf 9481 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( A  e.  RR*  /\  A  =/= -oo )
)  ->  ( A +e A )  =/= -oo )
145142, 143, 142, 143, 144syl22anc 1185 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A +e A )  =/= -oo )
146145neneqd 2288 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  ( A +e A )  = -oo )
147132adantr 272 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  (
( A +e
A )  = -oo  <->  ( A +e A )  <_  ( B +e B ) ) )
148146, 147mtbid 638 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  -.  ( A +e A )  <_  ( B +e B ) )
149141, 1482falsed 659 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = +oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
150108biimpa 292 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  <_  B )
151 simplll 503 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  e.  RR* )
152151, 151xaddcld 9508 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  e.  RR* )
153152xrleidd 9428 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  <_  ( A +e A ) )
154 simpr 109 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  = -oo )
155 simplr 500 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  B  = -oo )
156154, 155eqtr4d 2135 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  A  =  B )
157156, 156oveq12d 5724 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  =  ( B +e B ) )
158153, 157breqtrd 3899 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A +e A )  <_  ( B +e B ) )
159150, 1582thd 174 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  = -oo )  /\  A  = -oo )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
16074ad2antrr 475 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
161135, 149, 159, 160mpjao3dan 1253 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  = -oo )  ->  ( A  <_  B 
<->  ( A +e
A )  <_  ( B +e B ) ) )
162 elxr 9404 . . . 4  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
163162biimpi 119 . . 3  |-  ( B  e.  RR*  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
164163adantl 273 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
16576, 96, 161, 164mpjao3dan 1253 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 929    = wceq 1299    e. wcel 1448    =/= wne 2267   class class class wbr 3875  (class class class)co 5706   CCcc 7498   RRcr 7499   0cc0 7500    + caddc 7503    x. cmul 7505   +oocpnf 7669   -oocmnf 7670   RR*cxr 7671    < clt 7672    <_ cle 7673   2c2 8629   +ecxad 9398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-lttrn 7609  ax-pre-ltadd 7611  ax-pre-mulgt0 7612
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-2 8637  df-xadd 9401
This theorem is referenced by:  psmetge0  12259  xmetge0  12293
  Copyright terms: Public domain W3C validator