ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2optocl Unicode version

Theorem 2optocl 4715
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
Hypotheses
Ref Expression
2optocl.1  |-  R  =  ( C  X.  D
)
2optocl.2  |-  ( <.
x ,  y >.  =  A  ->  ( ph  <->  ps ) )
2optocl.3  |-  ( <.
z ,  w >.  =  B  ->  ( ps  <->  ch ) )
2optocl.4  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( z  e.  C  /\  w  e.  D ) )  ->  ph )
Assertion
Ref Expression
2optocl  |-  ( ( A  e.  R  /\  B  e.  R )  ->  ch )
Distinct variable groups:    x, y, z, w, A    z, B, w    x, C, y, z, w    x, D, y, z, w    ps, x, y    ch, z, w    z, R, w
Allowed substitution hints:    ph( x, y, z, w)    ps( z, w)    ch( x, y)    B( x, y)    R( x, y)

Proof of Theorem 2optocl
StepHypRef Expression
1 2optocl.1 . . 3  |-  R  =  ( C  X.  D
)
2 2optocl.3 . . . 4  |-  ( <.
z ,  w >.  =  B  ->  ( ps  <->  ch ) )
32imbi2d 230 . . 3  |-  ( <.
z ,  w >.  =  B  ->  ( ( A  e.  R  ->  ps )  <->  ( A  e.  R  ->  ch )
) )
4 2optocl.2 . . . . . 6  |-  ( <.
x ,  y >.  =  A  ->  ( ph  <->  ps ) )
54imbi2d 230 . . . . 5  |-  ( <.
x ,  y >.  =  A  ->  ( ( ( z  e.  C  /\  w  e.  D
)  ->  ph )  <->  ( (
z  e.  C  /\  w  e.  D )  ->  ps ) ) )
6 2optocl.4 . . . . . 6  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( z  e.  C  /\  w  e.  D ) )  ->  ph )
76ex 115 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ( ( z  e.  C  /\  w  e.  D )  ->  ph )
)
81, 5, 7optocl 4714 . . . 4  |-  ( A  e.  R  ->  (
( z  e.  C  /\  w  e.  D
)  ->  ps )
)
98com12 30 . . 3  |-  ( ( z  e.  C  /\  w  e.  D )  ->  ( A  e.  R  ->  ps ) )
101, 3, 9optocl 4714 . 2  |-  ( B  e.  R  ->  ( A  e.  R  ->  ch ) )
1110impcom 125 1  |-  ( ( A  e.  R  /\  B  e.  R )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   <.cop 3607    X. cxp 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-opab 4077  df-xp 4644
This theorem is referenced by:  3optocl  4716  ecopovsym  6645  ecopovsymg  6648  th3qlem2  6652  axaddcom  7883
  Copyright terms: Public domain W3C validator