ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2optocl Unicode version

Theorem 2optocl 4663
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
Hypotheses
Ref Expression
2optocl.1  |-  R  =  ( C  X.  D
)
2optocl.2  |-  ( <.
x ,  y >.  =  A  ->  ( ph  <->  ps ) )
2optocl.3  |-  ( <.
z ,  w >.  =  B  ->  ( ps  <->  ch ) )
2optocl.4  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( z  e.  C  /\  w  e.  D ) )  ->  ph )
Assertion
Ref Expression
2optocl  |-  ( ( A  e.  R  /\  B  e.  R )  ->  ch )
Distinct variable groups:    x, y, z, w, A    z, B, w    x, C, y, z, w    x, D, y, z, w    ps, x, y    ch, z, w    z, R, w
Allowed substitution hints:    ph( x, y, z, w)    ps( z, w)    ch( x, y)    B( x, y)    R( x, y)

Proof of Theorem 2optocl
StepHypRef Expression
1 2optocl.1 . . 3  |-  R  =  ( C  X.  D
)
2 2optocl.3 . . . 4  |-  ( <.
z ,  w >.  =  B  ->  ( ps  <->  ch ) )
32imbi2d 229 . . 3  |-  ( <.
z ,  w >.  =  B  ->  ( ( A  e.  R  ->  ps )  <->  ( A  e.  R  ->  ch )
) )
4 2optocl.2 . . . . . 6  |-  ( <.
x ,  y >.  =  A  ->  ( ph  <->  ps ) )
54imbi2d 229 . . . . 5  |-  ( <.
x ,  y >.  =  A  ->  ( ( ( z  e.  C  /\  w  e.  D
)  ->  ph )  <->  ( (
z  e.  C  /\  w  e.  D )  ->  ps ) ) )
6 2optocl.4 . . . . . 6  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( z  e.  C  /\  w  e.  D ) )  ->  ph )
76ex 114 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ( ( z  e.  C  /\  w  e.  D )  ->  ph )
)
81, 5, 7optocl 4662 . . . 4  |-  ( A  e.  R  ->  (
( z  e.  C  /\  w  e.  D
)  ->  ps )
)
98com12 30 . . 3  |-  ( ( z  e.  C  /\  w  e.  D )  ->  ( A  e.  R  ->  ps ) )
101, 3, 9optocl 4662 . 2  |-  ( B  e.  R  ->  ( A  e.  R  ->  ch ) )
1110impcom 124 1  |-  ( ( A  e.  R  /\  B  e.  R )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   <.cop 3563    X. cxp 4584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-opab 4026  df-xp 4592
This theorem is referenced by:  3optocl  4664  ecopovsym  6576  ecopovsymg  6579  th3qlem2  6583  axaddcom  7790
  Copyright terms: Public domain W3C validator