Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecopovsymg | Unicode version |
Description: Assuming the operation is commutative, show that the relation , specified by the first hypothesis, is symmetric. (Contributed by Jim Kingdon, 1-Sep-2019.) |
Ref | Expression |
---|---|
ecopopr.1 | |
ecopoprg.com |
Ref | Expression |
---|---|
ecopovsymg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecopopr.1 | . . . . 5 | |
2 | opabssxp 4678 | . . . . 5 | |
3 | 1, 2 | eqsstri 3174 | . . . 4 |
4 | 3 | brel 4656 | . . 3 |
5 | eqid 2165 | . . . 4 | |
6 | breq1 3985 | . . . . 5 | |
7 | breq2 3986 | . . . . 5 | |
8 | 6, 7 | bibi12d 234 | . . . 4 |
9 | breq2 3986 | . . . . 5 | |
10 | breq1 3985 | . . . . 5 | |
11 | 9, 10 | bibi12d 234 | . . . 4 |
12 | ecopoprg.com | . . . . . . . . 9 | |
13 | 12 | adantl 275 | . . . . . . . 8 |
14 | simpll 519 | . . . . . . . 8 | |
15 | simprr 522 | . . . . . . . 8 | |
16 | 13, 14, 15 | caovcomd 5998 | . . . . . . 7 |
17 | simplr 520 | . . . . . . . 8 | |
18 | simprl 521 | . . . . . . . 8 | |
19 | 13, 17, 18 | caovcomd 5998 | . . . . . . 7 |
20 | 16, 19 | eqeq12d 2180 | . . . . . 6 |
21 | eqcom 2167 | . . . . . 6 | |
22 | 20, 21 | bitrdi 195 | . . . . 5 |
23 | 1 | ecopoveq 6596 | . . . . 5 |
24 | 1 | ecopoveq 6596 | . . . . . 6 |
25 | 24 | ancoms 266 | . . . . 5 |
26 | 22, 23, 25 | 3bitr4d 219 | . . . 4 |
27 | 5, 8, 11, 26 | 2optocl 4681 | . . 3 |
28 | 4, 27 | syl 14 | . 2 |
29 | 28 | ibi 175 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cop 3579 class class class wbr 3982 copab 4042 cxp 4602 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: ecopoverg 6602 |
Copyright terms: Public domain | W3C validator |