![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2optocl | GIF version |
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
2optocl.1 | ⊢ 𝑅 = (𝐶 × 𝐷) |
2optocl.2 | ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) |
2optocl.3 | ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝜓 ↔ 𝜒)) |
2optocl.4 | ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) |
Ref | Expression |
---|---|
2optocl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2optocl.1 | . . 3 ⊢ 𝑅 = (𝐶 × 𝐷) | |
2 | 2optocl.3 | . . . 4 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 2 | imbi2d 230 | . . 3 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → ((𝐴 ∈ 𝑅 → 𝜓) ↔ (𝐴 ∈ 𝑅 → 𝜒))) |
4 | 2optocl.2 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | imbi2d 230 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜑) ↔ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜓))) |
6 | 2optocl.4 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) | |
7 | 6 | ex 115 | . . . . 5 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜑)) |
8 | 1, 5, 7 | optocl 4720 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜓)) |
9 | 8 | com12 30 | . . 3 ⊢ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → (𝐴 ∈ 𝑅 → 𝜓)) |
10 | 1, 3, 9 | optocl 4720 | . 2 ⊢ (𝐵 ∈ 𝑅 → (𝐴 ∈ 𝑅 → 𝜒)) |
11 | 10 | impcom 125 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 〈cop 3610 × cxp 4642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-opab 4080 df-xp 4650 |
This theorem is referenced by: 3optocl 4722 ecopovsym 6658 ecopovsymg 6661 th3qlem2 6665 axaddcom 7900 |
Copyright terms: Public domain | W3C validator |