| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2optocl | GIF version | ||
| Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| 2optocl.1 | ⊢ 𝑅 = (𝐶 × 𝐷) |
| 2optocl.2 | ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 2optocl.3 | ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝜓 ↔ 𝜒)) |
| 2optocl.4 | ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) |
| Ref | Expression |
|---|---|
| 2optocl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2optocl.1 | . . 3 ⊢ 𝑅 = (𝐶 × 𝐷) | |
| 2 | 2optocl.3 | . . . 4 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | imbi2d 230 | . . 3 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → ((𝐴 ∈ 𝑅 → 𝜓) ↔ (𝐴 ∈ 𝑅 → 𝜒))) |
| 4 | 2optocl.2 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | imbi2d 230 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜑) ↔ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜓))) |
| 6 | 2optocl.4 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) | |
| 7 | 6 | ex 115 | . . . . 5 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜑)) |
| 8 | 1, 5, 7 | optocl 4792 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜓)) |
| 9 | 8 | com12 30 | . . 3 ⊢ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → (𝐴 ∈ 𝑅 → 𝜓)) |
| 10 | 1, 3, 9 | optocl 4792 | . 2 ⊢ (𝐵 ∈ 𝑅 → (𝐴 ∈ 𝑅 → 𝜒)) |
| 11 | 10 | impcom 125 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 〈cop 3669 × cxp 4714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-xp 4722 |
| This theorem is referenced by: 3optocl 4794 ecopovsym 6768 ecopovsymg 6771 th3qlem2 6775 axaddcom 8045 |
| Copyright terms: Public domain | W3C validator |