| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > optocl | Unicode version | ||
| Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.) |
| Ref | Expression |
|---|---|
| optocl.1 |
|
| optocl.2 |
|
| optocl.3 |
|
| Ref | Expression |
|---|---|
| optocl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp3 4730 |
. . 3
| |
| 2 | opelxp 4706 |
. . . . . . 7
| |
| 3 | optocl.3 |
. . . . . . 7
| |
| 4 | 2, 3 | sylbi 121 |
. . . . . 6
|
| 5 | optocl.2 |
. . . . . 6
| |
| 6 | 4, 5 | imbitrid 154 |
. . . . 5
|
| 7 | 6 | imp 124 |
. . . 4
|
| 8 | 7 | exlimivv 1920 |
. . 3
|
| 9 | 1, 8 | sylbi 121 |
. 2
|
| 10 | optocl.1 |
. 2
| |
| 11 | 9, 10 | eleq2s 2300 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4107 df-xp 4682 |
| This theorem is referenced by: 2optocl 4753 3optocl 4754 ecoptocl 6711 ax1rid 7992 ax0id 7993 axcnre 7996 |
| Copyright terms: Public domain | W3C validator |