ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  optocl Unicode version

Theorem optocl 4795
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.)
Hypotheses
Ref Expression
optocl.1  |-  D  =  ( B  X.  C
)
optocl.2  |-  ( <.
x ,  y >.  =  A  ->  ( ph  <->  ps ) )
optocl.3  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )
Assertion
Ref Expression
optocl  |-  ( A  e.  D  ->  ps )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    ps, x, y
Allowed substitution hints:    ph( x, y)    D( x, y)

Proof of Theorem optocl
StepHypRef Expression
1 elxp3 4773 . . 3  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( <. x ,  y >.  =  A  /\  <. x ,  y
>.  e.  ( B  X.  C ) ) )
2 opelxp 4749 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( B  X.  C
)  <->  ( x  e.  B  /\  y  e.  C ) )
3 optocl.3 . . . . . . 7  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )
42, 3sylbi 121 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( B  X.  C
)  ->  ph )
5 optocl.2 . . . . . 6  |-  ( <.
x ,  y >.  =  A  ->  ( ph  <->  ps ) )
64, 5imbitrid 154 . . . . 5  |-  ( <.
x ,  y >.  =  A  ->  ( <.
x ,  y >.  e.  ( B  X.  C
)  ->  ps )
)
76imp 124 . . . 4  |-  ( (
<. x ,  y >.  =  A  /\  <. x ,  y >.  e.  ( B  X.  C ) )  ->  ps )
87exlimivv 1943 . . 3  |-  ( E. x E. y (
<. x ,  y >.  =  A  /\  <. x ,  y >.  e.  ( B  X.  C ) )  ->  ps )
91, 8sylbi 121 . 2  |-  ( A  e.  ( B  X.  C )  ->  ps )
10 optocl.1 . 2  |-  D  =  ( B  X.  C
)
119, 10eleq2s 2324 1  |-  ( A  e.  D  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   <.cop 3669    X. cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-xp 4725
This theorem is referenced by:  2optocl  4796  3optocl  4797  ecoptocl  6769  ax1rid  8064  ax0id  8065  axcnre  8068
  Copyright terms: Public domain W3C validator