Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > optocl | Unicode version |
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.) |
Ref | Expression |
---|---|
optocl.1 | |
optocl.2 | |
optocl.3 |
Ref | Expression |
---|---|
optocl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp3 4665 | . . 3 | |
2 | opelxp 4641 | . . . . . . 7 | |
3 | optocl.3 | . . . . . . 7 | |
4 | 2, 3 | sylbi 120 | . . . . . 6 |
5 | optocl.2 | . . . . . 6 | |
6 | 4, 5 | syl5ib 153 | . . . . 5 |
7 | 6 | imp 123 | . . . 4 |
8 | 7 | exlimivv 1889 | . . 3 |
9 | 1, 8 | sylbi 120 | . 2 |
10 | optocl.1 | . 2 | |
11 | 9, 10 | eleq2s 2265 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cop 3586 cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-xp 4617 |
This theorem is referenced by: 2optocl 4688 3optocl 4689 ecoptocl 6600 ax1rid 7839 ax0id 7840 axcnre 7843 |
Copyright terms: Public domain | W3C validator |