ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  optocl Unicode version

Theorem optocl 4703
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.)
Hypotheses
Ref Expression
optocl.1  |-  D  =  ( B  X.  C
)
optocl.2  |-  ( <.
x ,  y >.  =  A  ->  ( ph  <->  ps ) )
optocl.3  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )
Assertion
Ref Expression
optocl  |-  ( A  e.  D  ->  ps )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    ps, x, y
Allowed substitution hints:    ph( x, y)    D( x, y)

Proof of Theorem optocl
StepHypRef Expression
1 elxp3 4681 . . 3  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( <. x ,  y >.  =  A  /\  <. x ,  y
>.  e.  ( B  X.  C ) ) )
2 opelxp 4657 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( B  X.  C
)  <->  ( x  e.  B  /\  y  e.  C ) )
3 optocl.3 . . . . . . 7  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )
42, 3sylbi 121 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( B  X.  C
)  ->  ph )
5 optocl.2 . . . . . 6  |-  ( <.
x ,  y >.  =  A  ->  ( ph  <->  ps ) )
64, 5imbitrid 154 . . . . 5  |-  ( <.
x ,  y >.  =  A  ->  ( <.
x ,  y >.  e.  ( B  X.  C
)  ->  ps )
)
76imp 124 . . . 4  |-  ( (
<. x ,  y >.  =  A  /\  <. x ,  y >.  e.  ( B  X.  C ) )  ->  ps )
87exlimivv 1896 . . 3  |-  ( E. x E. y (
<. x ,  y >.  =  A  /\  <. x ,  y >.  e.  ( B  X.  C ) )  ->  ps )
91, 8sylbi 121 . 2  |-  ( A  e.  ( B  X.  C )  ->  ps )
10 optocl.1 . 2  |-  D  =  ( B  X.  C
)
119, 10eleq2s 2272 1  |-  ( A  e.  D  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   <.cop 3596    X. cxp 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-opab 4066  df-xp 4633
This theorem is referenced by:  2optocl  4704  3optocl  4705  ecoptocl  6622  ax1rid  7876  ax0id  7877  axcnre  7880
  Copyright terms: Public domain W3C validator