ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  optocl Unicode version

Theorem optocl 4680
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.)
Hypotheses
Ref Expression
optocl.1  |-  D  =  ( B  X.  C
)
optocl.2  |-  ( <.
x ,  y >.  =  A  ->  ( ph  <->  ps ) )
optocl.3  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )
Assertion
Ref Expression
optocl  |-  ( A  e.  D  ->  ps )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    ps, x, y
Allowed substitution hints:    ph( x, y)    D( x, y)

Proof of Theorem optocl
StepHypRef Expression
1 elxp3 4658 . . 3  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( <. x ,  y >.  =  A  /\  <. x ,  y
>.  e.  ( B  X.  C ) ) )
2 opelxp 4634 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( B  X.  C
)  <->  ( x  e.  B  /\  y  e.  C ) )
3 optocl.3 . . . . . . 7  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )
42, 3sylbi 120 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( B  X.  C
)  ->  ph )
5 optocl.2 . . . . . 6  |-  ( <.
x ,  y >.  =  A  ->  ( ph  <->  ps ) )
64, 5syl5ib 153 . . . . 5  |-  ( <.
x ,  y >.  =  A  ->  ( <.
x ,  y >.  e.  ( B  X.  C
)  ->  ps )
)
76imp 123 . . . 4  |-  ( (
<. x ,  y >.  =  A  /\  <. x ,  y >.  e.  ( B  X.  C ) )  ->  ps )
87exlimivv 1884 . . 3  |-  ( E. x E. y (
<. x ,  y >.  =  A  /\  <. x ,  y >.  e.  ( B  X.  C ) )  ->  ps )
91, 8sylbi 120 . 2  |-  ( A  e.  ( B  X.  C )  ->  ps )
10 optocl.1 . 2  |-  D  =  ( B  X.  C
)
119, 10eleq2s 2261 1  |-  ( A  e.  D  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   <.cop 3579    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610
This theorem is referenced by:  2optocl  4681  3optocl  4682  ecoptocl  6588  ax1rid  7818  ax0id  7819  axcnre  7822
  Copyright terms: Public domain W3C validator