ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axaddcom Unicode version

Theorem axaddcom 7702
Description: Addition commutes. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcom 7744 be used later. Instead, use addcom 7923.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on real number trichotomy and it is not known whether it is possible to prove this from the other axioms without it. (Contributed by Jim Kingdon, 17-Jan-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axaddcom  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )

Proof of Theorem axaddcom
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 7650 . 2  |-  CC  =  ( R.  X.  R. )
2 oveq1 5789 . . 3  |-  ( <.
x ,  y >.  =  A  ->  ( <.
x ,  y >.  +  <. z ,  w >. )  =  ( A  +  <. z ,  w >. ) )
3 oveq2 5790 . . 3  |-  ( <.
x ,  y >.  =  A  ->  ( <.
z ,  w >.  + 
<. x ,  y >.
)  =  ( <.
z ,  w >.  +  A ) )
42, 3eqeq12d 2155 . 2  |-  ( <.
x ,  y >.  =  A  ->  ( (
<. x ,  y >.  +  <. z ,  w >. )  =  ( <.
z ,  w >.  + 
<. x ,  y >.
)  <->  ( A  +  <. z ,  w >. )  =  ( <. z ,  w >.  +  A
) ) )
5 oveq2 5790 . . 3  |-  ( <.
z ,  w >.  =  B  ->  ( A  +  <. z ,  w >. )  =  ( A  +  B ) )
6 oveq1 5789 . . 3  |-  ( <.
z ,  w >.  =  B  ->  ( <. z ,  w >.  +  A
)  =  ( B  +  A ) )
75, 6eqeq12d 2155 . 2  |-  ( <.
z ,  w >.  =  B  ->  ( ( A  +  <. z ,  w >. )  =  (
<. z ,  w >.  +  A )  <->  ( A  +  B )  =  ( B  +  A ) ) )
8 addcomsrg 7587 . . . . 5  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( x  +R  z
)  =  ( z  +R  x ) )
98ad2ant2r 501 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( x  +R  z )  =  ( z  +R  x ) )
10 addcomsrg 7587 . . . . 5  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( y  +R  w
)  =  ( w  +R  y ) )
1110ad2ant2l 500 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( y  +R  w )  =  ( w  +R  y ) )
129, 11opeq12d 3721 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  <. ( x  +R  z ) ,  ( y  +R  w
) >.  =  <. (
z  +R  x ) ,  ( w  +R  y ) >. )
13 addcnsr 7666 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( <. x ,  y >.  +  <. z ,  w >. )  =  <. ( x  +R  z ) ,  ( y  +R  w )
>. )
14 addcnsr 7666 . . . 4  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( x  e.  R.  /\  y  e.  R. )
)  ->  ( <. z ,  w >.  +  <. x ,  y >. )  =  <. ( z  +R  x ) ,  ( w  +R  y )
>. )
1514ancoms 266 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( <. z ,  w >.  +  <. x ,  y >. )  =  <. ( z  +R  x ) ,  ( w  +R  y )
>. )
1612, 13, 153eqtr4d 2183 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( <. x ,  y >.  +  <. z ,  w >. )  =  ( <. z ,  w >.  +  <. x ,  y >. )
)
171, 4, 7, 162optocl 4624 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   <.cop 3535  (class class class)co 5782   R.cnr 7129    +R cplr 7133   CCcc 7642    + caddc 7647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-enr 7558  df-nr 7559  df-plr 7560  df-c 7650  df-add 7655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator