| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > tfr1onlembacc | Unicode version | ||
| Description: Lemma for tfr1on 6408.  Each element of  | 
| Ref | Expression | 
|---|---|
| tfr1on.f | 
 | 
| tfr1on.g | 
 | 
| tfr1on.x | 
 | 
| tfr1on.ex | 
 | 
| tfr1onlemsucfn.1 | 
 | 
| tfr1onlembacc.3 | 
 | 
| tfr1onlembacc.u | 
 | 
| tfr1onlembacc.4 | 
 | 
| tfr1onlembacc.5 | 
 | 
| Ref | Expression | 
|---|---|
| tfr1onlembacc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tfr1onlembacc.3 | 
. 2
 | |
| 2 | simpr3 1007 | 
. . . . . . 7
 | |
| 3 | tfr1on.f | 
. . . . . . . 8
 | |
| 4 | tfr1on.g | 
. . . . . . . . 9
 | |
| 5 | 4 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 6 | tfr1on.x | 
. . . . . . . . 9
 | |
| 7 | 6 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 8 | tfr1on.ex | 
. . . . . . . . . 10
 | |
| 9 | 8 | 3adant1r 1233 | 
. . . . . . . . 9
 | 
| 10 | 9 | 3adant1r 1233 | 
. . . . . . . 8
 | 
| 11 | tfr1onlemsucfn.1 | 
. . . . . . . 8
 | |
| 12 | tfr1onlembacc.4 | 
. . . . . . . . 9
 | |
| 13 | 12 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 14 | simplr 528 | 
. . . . . . . 8
 | |
| 15 | tfr1onlembacc.u | 
. . . . . . . . . 10
 | |
| 16 | 15 | adantlr 477 | 
. . . . . . . . 9
 | 
| 17 | 16 | adantlr 477 | 
. . . . . . . 8
 | 
| 18 | simpr1 1005 | 
. . . . . . . 8
 | |
| 19 | simpr2 1006 | 
. . . . . . . 8
 | |
| 20 | 3, 5, 7, 10, 11, 13, 14, 17, 18, 19 | tfr1onlemsucaccv 6399 | 
. . . . . . 7
 | 
| 21 | 2, 20 | eqeltrd 2273 | 
. . . . . 6
 | 
| 22 | 21 | ex 115 | 
. . . . 5
 | 
| 23 | 22 | exlimdv 1833 | 
. . . 4
 | 
| 24 | 23 | rexlimdva 2614 | 
. . 3
 | 
| 25 | 24 | abssdv 3257 | 
. 2
 | 
| 26 | 1, 25 | eqsstrid 3229 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 | 
| This theorem is referenced by: tfr1onlembfn 6402 tfr1onlemubacc 6404 | 
| Copyright terms: Public domain | W3C validator |