| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr1onlembacc | Unicode version | ||
| Description: Lemma for tfr1on 6438. Each element of |
| Ref | Expression |
|---|---|
| tfr1on.f |
|
| tfr1on.g |
|
| tfr1on.x |
|
| tfr1on.ex |
|
| tfr1onlemsucfn.1 |
|
| tfr1onlembacc.3 |
|
| tfr1onlembacc.u |
|
| tfr1onlembacc.4 |
|
| tfr1onlembacc.5 |
|
| Ref | Expression |
|---|---|
| tfr1onlembacc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr1onlembacc.3 |
. 2
| |
| 2 | simpr3 1008 |
. . . . . . 7
| |
| 3 | tfr1on.f |
. . . . . . . 8
| |
| 4 | tfr1on.g |
. . . . . . . . 9
| |
| 5 | 4 | ad2antrr 488 |
. . . . . . . 8
|
| 6 | tfr1on.x |
. . . . . . . . 9
| |
| 7 | 6 | ad2antrr 488 |
. . . . . . . 8
|
| 8 | tfr1on.ex |
. . . . . . . . . 10
| |
| 9 | 8 | 3adant1r 1234 |
. . . . . . . . 9
|
| 10 | 9 | 3adant1r 1234 |
. . . . . . . 8
|
| 11 | tfr1onlemsucfn.1 |
. . . . . . . 8
| |
| 12 | tfr1onlembacc.4 |
. . . . . . . . 9
| |
| 13 | 12 | ad2antrr 488 |
. . . . . . . 8
|
| 14 | simplr 528 |
. . . . . . . 8
| |
| 15 | tfr1onlembacc.u |
. . . . . . . . . 10
| |
| 16 | 15 | adantlr 477 |
. . . . . . . . 9
|
| 17 | 16 | adantlr 477 |
. . . . . . . 8
|
| 18 | simpr1 1006 |
. . . . . . . 8
| |
| 19 | simpr2 1007 |
. . . . . . . 8
| |
| 20 | 3, 5, 7, 10, 11, 13, 14, 17, 18, 19 | tfr1onlemsucaccv 6429 |
. . . . . . 7
|
| 21 | 2, 20 | eqeltrd 2282 |
. . . . . 6
|
| 22 | 21 | ex 115 |
. . . . 5
|
| 23 | 22 | exlimdv 1842 |
. . . 4
|
| 24 | 23 | rexlimdva 2623 |
. . 3
|
| 25 | 24 | abssdv 3267 |
. 2
|
| 26 | 1, 25 | eqsstrid 3239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-res 4688 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 |
| This theorem is referenced by: tfr1onlembfn 6432 tfr1onlemubacc 6434 |
| Copyright terms: Public domain | W3C validator |