ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlembacc Unicode version

Theorem tfr1onlembacc 6346
Description: Lemma for tfr1on 6354. Each element of  B is an acceptable function. (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlembacc.3  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
tfr1onlembacc.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfr1onlembacc.4  |-  ( ph  ->  D  e.  X )
tfr1onlembacc.5  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfr1onlembacc  |-  ( ph  ->  B  C_  A )
Distinct variable groups:    A, f, g, h, x, z    D, f, g, x    f, G, x, y    f, X, x    ph, f, g, h, x, z    y, g, z
Allowed substitution hints:    ph( y, w)    A( y, w)    B( x, y, z, w, f, g, h)    D( y, z, w, h)    F( x, y, z, w, f, g, h)    G( z, w, g, h)    X( y, z, w, g, h)

Proof of Theorem tfr1onlembacc
StepHypRef Expression
1 tfr1onlembacc.3 . 2  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
2 simpr3 1005 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  h  =  ( g  u.  { <. z ,  ( G `  g ) >. } ) )
3 tfr1on.f . . . . . . . 8  |-  F  = recs ( G )
4 tfr1on.g . . . . . . . . 9  |-  ( ph  ->  Fun  G )
54ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  Fun  G )
6 tfr1on.x . . . . . . . . 9  |-  ( ph  ->  Ord  X )
76ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  Ord  X )
8 tfr1on.ex . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
983adant1r 1231 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )
1093adant1r 1231 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  D )  /\  ( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )
11 tfr1onlemsucfn.1 . . . . . . . 8  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
12 tfr1onlembacc.4 . . . . . . . . 9  |-  ( ph  ->  D  e.  X )
1312ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  D  e.  X
)
14 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  z  e.  D
)
15 tfr1onlembacc.u . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
1615adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  U. X )  ->  suc  x  e.  X )
1716adantlr 477 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  D )  /\  ( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  /\  x  e.  U. X )  ->  suc  x  e.  X )
18 simpr1 1003 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  g  Fn  z
)
19 simpr2 1004 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  g  e.  A
)
203, 5, 7, 10, 11, 13, 14, 17, 18, 19tfr1onlemsucaccv 6345 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  e.  A
)
212, 20eqeltrd 2254 . . . . . 6  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  h  e.  A
)
2221ex 115 . . . . 5  |-  ( (
ph  /\  z  e.  D )  ->  (
( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) )  ->  h  e.  A ) )
2322exlimdv 1819 . . . 4  |-  ( (
ph  /\  z  e.  D )  ->  ( E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) )  ->  h  e.  A )
)
2423rexlimdva 2594 . . 3  |-  ( ph  ->  ( E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) )  ->  h  e.  A )
)
2524abssdv 3231 . 2  |-  ( ph  ->  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) } 
C_  A )
261, 25eqsstrid 3203 1  |-  ( ph  ->  B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   _Vcvv 2739    u. cun 3129    C_ wss 3131   {csn 3594   <.cop 3597   U.cuni 3811   Ord word 4364   suc csuc 4367    |` cres 4630   Fun wfun 5212    Fn wfn 5213   ` cfv 5218  recscrecs 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by:  tfr1onlembfn  6348  tfr1onlemubacc  6350
  Copyright terms: Public domain W3C validator