ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlembacc Unicode version

Theorem tfr1onlembacc 6310
Description: Lemma for tfr1on 6318. Each element of  B is an acceptable function. (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlembacc.3  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
tfr1onlembacc.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfr1onlembacc.4  |-  ( ph  ->  D  e.  X )
tfr1onlembacc.5  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfr1onlembacc  |-  ( ph  ->  B  C_  A )
Distinct variable groups:    A, f, g, h, x, z    D, f, g, x    f, G, x, y    f, X, x    ph, f, g, h, x, z    y, g, z
Allowed substitution hints:    ph( y, w)    A( y, w)    B( x, y, z, w, f, g, h)    D( y, z, w, h)    F( x, y, z, w, f, g, h)    G( z, w, g, h)    X( y, z, w, g, h)

Proof of Theorem tfr1onlembacc
StepHypRef Expression
1 tfr1onlembacc.3 . 2  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
2 simpr3 995 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  h  =  ( g  u.  { <. z ,  ( G `  g ) >. } ) )
3 tfr1on.f . . . . . . . 8  |-  F  = recs ( G )
4 tfr1on.g . . . . . . . . 9  |-  ( ph  ->  Fun  G )
54ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  Fun  G )
6 tfr1on.x . . . . . . . . 9  |-  ( ph  ->  Ord  X )
76ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  Ord  X )
8 tfr1on.ex . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
983adant1r 1221 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )
1093adant1r 1221 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  D )  /\  ( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )
11 tfr1onlemsucfn.1 . . . . . . . 8  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
12 tfr1onlembacc.4 . . . . . . . . 9  |-  ( ph  ->  D  e.  X )
1312ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  D  e.  X
)
14 simplr 520 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  z  e.  D
)
15 tfr1onlembacc.u . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
1615adantlr 469 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  U. X )  ->  suc  x  e.  X )
1716adantlr 469 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  D )  /\  ( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  /\  x  e.  U. X )  ->  suc  x  e.  X )
18 simpr1 993 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  g  Fn  z
)
19 simpr2 994 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  g  e.  A
)
203, 5, 7, 10, 11, 13, 14, 17, 18, 19tfr1onlemsucaccv 6309 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  e.  A
)
212, 20eqeltrd 2243 . . . . . 6  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  h  e.  A
)
2221ex 114 . . . . 5  |-  ( (
ph  /\  z  e.  D )  ->  (
( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) )  ->  h  e.  A ) )
2322exlimdv 1807 . . . 4  |-  ( (
ph  /\  z  e.  D )  ->  ( E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) )  ->  h  e.  A )
)
2423rexlimdva 2583 . . 3  |-  ( ph  ->  ( E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) )  ->  h  e.  A )
)
2524abssdv 3216 . 2  |-  ( ph  ->  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) } 
C_  A )
261, 25eqsstrid 3188 1  |-  ( ph  ->  B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343   E.wex 1480    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   _Vcvv 2726    u. cun 3114    C_ wss 3116   {csn 3576   <.cop 3579   U.cuni 3789   Ord word 4340   suc csuc 4343    |` cres 4606   Fun wfun 5182    Fn wfn 5183   ` cfv 5188  recscrecs 6272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  tfr1onlembfn  6312  tfr1onlemubacc  6314
  Copyright terms: Public domain W3C validator