ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlembacc Unicode version

Theorem tfr1onlembacc 6321
Description: Lemma for tfr1on 6329. Each element of  B is an acceptable function. (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlembacc.3  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
tfr1onlembacc.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfr1onlembacc.4  |-  ( ph  ->  D  e.  X )
tfr1onlembacc.5  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfr1onlembacc  |-  ( ph  ->  B  C_  A )
Distinct variable groups:    A, f, g, h, x, z    D, f, g, x    f, G, x, y    f, X, x    ph, f, g, h, x, z    y, g, z
Allowed substitution hints:    ph( y, w)    A( y, w)    B( x, y, z, w, f, g, h)    D( y, z, w, h)    F( x, y, z, w, f, g, h)    G( z, w, g, h)    X( y, z, w, g, h)

Proof of Theorem tfr1onlembacc
StepHypRef Expression
1 tfr1onlembacc.3 . 2  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
2 simpr3 1000 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  h  =  ( g  u.  { <. z ,  ( G `  g ) >. } ) )
3 tfr1on.f . . . . . . . 8  |-  F  = recs ( G )
4 tfr1on.g . . . . . . . . 9  |-  ( ph  ->  Fun  G )
54ad2antrr 485 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  Fun  G )
6 tfr1on.x . . . . . . . . 9  |-  ( ph  ->  Ord  X )
76ad2antrr 485 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  Ord  X )
8 tfr1on.ex . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
983adant1r 1226 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )
1093adant1r 1226 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  D )  /\  ( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )
11 tfr1onlemsucfn.1 . . . . . . . 8  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
12 tfr1onlembacc.4 . . . . . . . . 9  |-  ( ph  ->  D  e.  X )
1312ad2antrr 485 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  D  e.  X
)
14 simplr 525 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  z  e.  D
)
15 tfr1onlembacc.u . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
1615adantlr 474 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  U. X )  ->  suc  x  e.  X )
1716adantlr 474 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  D )  /\  ( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  /\  x  e.  U. X )  ->  suc  x  e.  X )
18 simpr1 998 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  g  Fn  z
)
19 simpr2 999 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  g  e.  A
)
203, 5, 7, 10, 11, 13, 14, 17, 18, 19tfr1onlemsucaccv 6320 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  e.  A
)
212, 20eqeltrd 2247 . . . . . 6  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) ) )  ->  h  e.  A
)
2221ex 114 . . . . 5  |-  ( (
ph  /\  z  e.  D )  ->  (
( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) )  ->  h  e.  A ) )
2322exlimdv 1812 . . . 4  |-  ( (
ph  /\  z  e.  D )  ->  ( E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) )  ->  h  e.  A )
)
2423rexlimdva 2587 . . 3  |-  ( ph  ->  ( E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) )  ->  h  e.  A )
)
2524abssdv 3221 . 2  |-  ( ph  ->  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) } 
C_  A )
261, 25eqsstrid 3193 1  |-  ( ph  ->  B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348   E.wex 1485    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   _Vcvv 2730    u. cun 3119    C_ wss 3121   {csn 3583   <.cop 3586   U.cuni 3796   Ord word 4347   suc csuc 4350    |` cres 4613   Fun wfun 5192    Fn wfn 5193   ` cfv 5198  recscrecs 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by:  tfr1onlembfn  6323  tfr1onlemubacc  6325
  Copyright terms: Public domain W3C validator