| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrcldm | Unicode version | ||
| Description: Recursion is defined on an ordinal if the characteristic function satisfies a closure hypothesis up to a suitable point. (Contributed by Jim Kingdon, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfrcl.f |
|
| tfrcl.g |
|
| tfrcl.x |
|
| tfrcl.ex |
|
| tfrcl.u |
|
| tfrcl.yx |
|
| Ref | Expression |
|---|---|
| tfrcldm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrcl.yx |
. . 3
| |
| 2 | eluni 3891 |
. . 3
| |
| 3 | 1, 2 | sylib 122 |
. 2
|
| 4 | tfrcl.f |
. . . 4
| |
| 5 | tfrcl.g |
. . . . 5
| |
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | tfrcl.x |
. . . . 5
| |
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | tfrcl.ex |
. . . . 5
| |
| 10 | 9 | 3adant1r 1255 |
. . . 4
|
| 11 | feq2 5457 |
. . . . . . . 8
| |
| 12 | raleq 2728 |
. . . . . . . 8
| |
| 13 | 11, 12 | anbi12d 473 |
. . . . . . 7
|
| 14 | 13 | cbvrexv 2766 |
. . . . . 6
|
| 15 | fveq2 5627 |
. . . . . . . . . 10
| |
| 16 | reseq2 5000 |
. . . . . . . . . . 11
| |
| 17 | 16 | fveq2d 5631 |
. . . . . . . . . 10
|
| 18 | 15, 17 | eqeq12d 2244 |
. . . . . . . . 9
|
| 19 | 18 | cbvralv 2765 |
. . . . . . . 8
|
| 20 | 19 | anbi2i 457 |
. . . . . . 7
|
| 21 | 20 | rexbii 2537 |
. . . . . 6
|
| 22 | 14, 21 | bitri 184 |
. . . . 5
|
| 23 | 22 | abbii 2345 |
. . . 4
|
| 24 | tfrcl.u |
. . . . 5
| |
| 25 | 24 | adantlr 477 |
. . . 4
|
| 26 | simprr 531 |
. . . 4
| |
| 27 | 4, 6, 8, 10, 23, 25, 26 | tfrcllemres 6508 |
. . 3
|
| 28 | simprl 529 |
. . 3
| |
| 29 | 27, 28 | sseldd 3225 |
. 2
|
| 30 | 3, 29 | exlimddv 1945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-recs 6451 |
| This theorem is referenced by: tfrcl 6510 frecfcllem 6550 frecsuclem 6552 |
| Copyright terms: Public domain | W3C validator |