ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcldm Unicode version

Theorem tfrcldm 6418
Description: Recursion is defined on an ordinal if the characteristic function satisfies a closure hypothesis up to a suitable point. (Contributed by Jim Kingdon, 26-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f  |-  F  = recs ( G )
tfrcl.g  |-  ( ph  ->  Fun  G )
tfrcl.x  |-  ( ph  ->  Ord  X )
tfrcl.ex  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
tfrcl.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfrcl.yx  |-  ( ph  ->  Y  e.  U. X
)
Assertion
Ref Expression
tfrcldm  |-  ( ph  ->  Y  e.  dom  F
)
Distinct variable groups:    f, G, x    S, f, x    f, X, x    f, Y, x    ph, f, x
Allowed substitution hints:    F( x, f)

Proof of Theorem tfrcldm
Dummy variables  z  a  b  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.yx . . 3  |-  ( ph  ->  Y  e.  U. X
)
2 eluni 3839 . . 3  |-  ( Y  e.  U. X  <->  E. z
( Y  e.  z  /\  z  e.  X
) )
31, 2sylib 122 . 2  |-  ( ph  ->  E. z ( Y  e.  z  /\  z  e.  X ) )
4 tfrcl.f . . . 4  |-  F  = recs ( G )
5 tfrcl.g . . . . 5  |-  ( ph  ->  Fun  G )
65adantr 276 . . . 4  |-  ( (
ph  /\  ( Y  e.  z  /\  z  e.  X ) )  ->  Fun  G )
7 tfrcl.x . . . . 5  |-  ( ph  ->  Ord  X )
87adantr 276 . . . 4  |-  ( (
ph  /\  ( Y  e.  z  /\  z  e.  X ) )  ->  Ord  X )
9 tfrcl.ex . . . . 5  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
1093adant1r 1233 . . . 4  |-  ( ( ( ph  /\  ( Y  e.  z  /\  z  e.  X )
)  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
11 feq2 5388 . . . . . . . 8  |-  ( a  =  x  ->  (
f : a --> S  <-> 
f : x --> S ) )
12 raleq 2690 . . . . . . . 8  |-  ( a  =  x  ->  ( A. b  e.  a 
( f `  b
)  =  ( G `
 ( f  |`  b ) )  <->  A. b  e.  x  ( f `  b )  =  ( G `  ( f  |`  b ) ) ) )
1311, 12anbi12d 473 . . . . . . 7  |-  ( a  =  x  ->  (
( f : a --> S  /\  A. b  e.  a  ( f `  b )  =  ( G `  ( f  |`  b ) ) )  <-> 
( f : x --> S  /\  A. b  e.  x  ( f `  b )  =  ( G `  ( f  |`  b ) ) ) ) )
1413cbvrexv 2727 . . . . . 6  |-  ( E. a  e.  X  ( f : a --> S  /\  A. b  e.  a  ( f `  b )  =  ( G `  ( f  |`  b ) ) )  <->  E. x  e.  X  ( f : x --> S  /\  A. b  e.  x  ( f `  b )  =  ( G `  ( f  |`  b ) ) ) )
15 fveq2 5555 . . . . . . . . . 10  |-  ( b  =  y  ->  (
f `  b )  =  ( f `  y ) )
16 reseq2 4938 . . . . . . . . . . 11  |-  ( b  =  y  ->  (
f  |`  b )  =  ( f  |`  y
) )
1716fveq2d 5559 . . . . . . . . . 10  |-  ( b  =  y  ->  ( G `  ( f  |`  b ) )  =  ( G `  (
f  |`  y ) ) )
1815, 17eqeq12d 2208 . . . . . . . . 9  |-  ( b  =  y  ->  (
( f `  b
)  =  ( G `
 ( f  |`  b ) )  <->  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) )
1918cbvralv 2726 . . . . . . . 8  |-  ( A. b  e.  x  (
f `  b )  =  ( G `  ( f  |`  b
) )  <->  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) )
2019anbi2i 457 . . . . . . 7  |-  ( ( f : x --> S  /\  A. b  e.  x  ( f `  b )  =  ( G `  ( f  |`  b
) ) )  <->  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) )
2120rexbii 2501 . . . . . 6  |-  ( E. x  e.  X  ( f : x --> S  /\  A. b  e.  x  ( f `  b )  =  ( G `  ( f  |`  b
) ) )  <->  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) )
2214, 21bitri 184 . . . . 5  |-  ( E. a  e.  X  ( f : a --> S  /\  A. b  e.  a  ( f `  b )  =  ( G `  ( f  |`  b ) ) )  <->  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) )
2322abbii 2309 . . . 4  |-  { f  |  E. a  e.  X  ( f : a --> S  /\  A. b  e.  a  (
f `  b )  =  ( G `  ( f  |`  b
) ) ) }  =  { f  |  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
24 tfrcl.u . . . . 5  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
2524adantlr 477 . . . 4  |-  ( ( ( ph  /\  ( Y  e.  z  /\  z  e.  X )
)  /\  x  e.  U. X )  ->  suc  x  e.  X )
26 simprr 531 . . . 4  |-  ( (
ph  /\  ( Y  e.  z  /\  z  e.  X ) )  -> 
z  e.  X )
274, 6, 8, 10, 23, 25, 26tfrcllemres 6417 . . 3  |-  ( (
ph  /\  ( Y  e.  z  /\  z  e.  X ) )  -> 
z  C_  dom  F )
28 simprl 529 . . 3  |-  ( (
ph  /\  ( Y  e.  z  /\  z  e.  X ) )  ->  Y  e.  z )
2927, 28sseldd 3181 . 2  |-  ( (
ph  /\  ( Y  e.  z  /\  z  e.  X ) )  ->  Y  e.  dom  F )
303, 29exlimddv 1910 1  |-  ( ph  ->  Y  e.  dom  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   U.cuni 3836   Ord word 4394   suc csuc 4397   dom cdm 4660    |` cres 4662   Fun wfun 5249   -->wf 5251   ` cfv 5255  recscrecs 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6360
This theorem is referenced by:  tfrcl  6419  frecfcllem  6459  frecsuclem  6461
  Copyright terms: Public domain W3C validator