ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcldm Unicode version

Theorem tfrcldm 6253
Description: Recursion is defined on an ordinal if the characteristic function satisfies a closure hypothesis up to a suitable point. (Contributed by Jim Kingdon, 26-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f  |-  F  = recs ( G )
tfrcl.g  |-  ( ph  ->  Fun  G )
tfrcl.x  |-  ( ph  ->  Ord  X )
tfrcl.ex  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
tfrcl.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfrcl.yx  |-  ( ph  ->  Y  e.  U. X
)
Assertion
Ref Expression
tfrcldm  |-  ( ph  ->  Y  e.  dom  F
)
Distinct variable groups:    f, G, x    S, f, x    f, X, x    f, Y, x    ph, f, x
Allowed substitution hints:    F( x, f)

Proof of Theorem tfrcldm
Dummy variables  z  a  b  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.yx . . 3  |-  ( ph  ->  Y  e.  U. X
)
2 eluni 3734 . . 3  |-  ( Y  e.  U. X  <->  E. z
( Y  e.  z  /\  z  e.  X
) )
31, 2sylib 121 . 2  |-  ( ph  ->  E. z ( Y  e.  z  /\  z  e.  X ) )
4 tfrcl.f . . . 4  |-  F  = recs ( G )
5 tfrcl.g . . . . 5  |-  ( ph  ->  Fun  G )
65adantr 274 . . . 4  |-  ( (
ph  /\  ( Y  e.  z  /\  z  e.  X ) )  ->  Fun  G )
7 tfrcl.x . . . . 5  |-  ( ph  ->  Ord  X )
87adantr 274 . . . 4  |-  ( (
ph  /\  ( Y  e.  z  /\  z  e.  X ) )  ->  Ord  X )
9 tfrcl.ex . . . . 5  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
1093adant1r 1209 . . . 4  |-  ( ( ( ph  /\  ( Y  e.  z  /\  z  e.  X )
)  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
11 feq2 5251 . . . . . . . 8  |-  ( a  =  x  ->  (
f : a --> S  <-> 
f : x --> S ) )
12 raleq 2624 . . . . . . . 8  |-  ( a  =  x  ->  ( A. b  e.  a 
( f `  b
)  =  ( G `
 ( f  |`  b ) )  <->  A. b  e.  x  ( f `  b )  =  ( G `  ( f  |`  b ) ) ) )
1311, 12anbi12d 464 . . . . . . 7  |-  ( a  =  x  ->  (
( f : a --> S  /\  A. b  e.  a  ( f `  b )  =  ( G `  ( f  |`  b ) ) )  <-> 
( f : x --> S  /\  A. b  e.  x  ( f `  b )  =  ( G `  ( f  |`  b ) ) ) ) )
1413cbvrexv 2653 . . . . . 6  |-  ( E. a  e.  X  ( f : a --> S  /\  A. b  e.  a  ( f `  b )  =  ( G `  ( f  |`  b ) ) )  <->  E. x  e.  X  ( f : x --> S  /\  A. b  e.  x  ( f `  b )  =  ( G `  ( f  |`  b ) ) ) )
15 fveq2 5414 . . . . . . . . . 10  |-  ( b  =  y  ->  (
f `  b )  =  ( f `  y ) )
16 reseq2 4809 . . . . . . . . . . 11  |-  ( b  =  y  ->  (
f  |`  b )  =  ( f  |`  y
) )
1716fveq2d 5418 . . . . . . . . . 10  |-  ( b  =  y  ->  ( G `  ( f  |`  b ) )  =  ( G `  (
f  |`  y ) ) )
1815, 17eqeq12d 2152 . . . . . . . . 9  |-  ( b  =  y  ->  (
( f `  b
)  =  ( G `
 ( f  |`  b ) )  <->  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) )
1918cbvralv 2652 . . . . . . . 8  |-  ( A. b  e.  x  (
f `  b )  =  ( G `  ( f  |`  b
) )  <->  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) )
2019anbi2i 452 . . . . . . 7  |-  ( ( f : x --> S  /\  A. b  e.  x  ( f `  b )  =  ( G `  ( f  |`  b
) ) )  <->  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) )
2120rexbii 2440 . . . . . 6  |-  ( E. x  e.  X  ( f : x --> S  /\  A. b  e.  x  ( f `  b )  =  ( G `  ( f  |`  b
) ) )  <->  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) )
2214, 21bitri 183 . . . . 5  |-  ( E. a  e.  X  ( f : a --> S  /\  A. b  e.  a  ( f `  b )  =  ( G `  ( f  |`  b ) ) )  <->  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) )
2322abbii 2253 . . . 4  |-  { f  |  E. a  e.  X  ( f : a --> S  /\  A. b  e.  a  (
f `  b )  =  ( G `  ( f  |`  b
) ) ) }  =  { f  |  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
24 tfrcl.u . . . . 5  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
2524adantlr 468 . . . 4  |-  ( ( ( ph  /\  ( Y  e.  z  /\  z  e.  X )
)  /\  x  e.  U. X )  ->  suc  x  e.  X )
26 simprr 521 . . . 4  |-  ( (
ph  /\  ( Y  e.  z  /\  z  e.  X ) )  -> 
z  e.  X )
274, 6, 8, 10, 23, 25, 26tfrcllemres 6252 . . 3  |-  ( (
ph  /\  ( Y  e.  z  /\  z  e.  X ) )  -> 
z  C_  dom  F )
28 simprl 520 . . 3  |-  ( (
ph  /\  ( Y  e.  z  /\  z  e.  X ) )  ->  Y  e.  z )
2927, 28sseldd 3093 . 2  |-  ( (
ph  /\  ( Y  e.  z  /\  z  e.  X ) )  ->  Y  e.  dom  F )
303, 29exlimddv 1870 1  |-  ( ph  ->  Y  e.  dom  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331   E.wex 1468    e. wcel 1480   {cab 2123   A.wral 2414   E.wrex 2415   U.cuni 3731   Ord word 4279   suc csuc 4282   dom cdm 4534    |` cres 4536   Fun wfun 5112   -->wf 5114   ` cfv 5118  recscrecs 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-recs 6195
This theorem is referenced by:  tfrcl  6254  frecfcllem  6294  frecsuclem  6296
  Copyright terms: Public domain W3C validator