ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3onn Unicode version

Theorem 3onn 6418
Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
3onn  |-  3o  e.  om

Proof of Theorem 3onn
StepHypRef Expression
1 df-3o 6315 . 2  |-  3o  =  suc  2o
2 2onn 6417 . . 3  |-  2o  e.  om
3 peano2 4509 . . 3  |-  ( 2o  e.  om  ->  suc  2o  e.  om )
42, 3ax-mp 5 . 2  |-  suc  2o  e.  om
51, 4eqeltri 2212 1  |-  3o  e.  om
Colors of variables: wff set class
Syntax hints:    e. wcel 1480   suc csuc 4287   omcom 4504   2oc2o 6307   3oc3o 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-uni 3737  df-int 3772  df-suc 4293  df-iom 4505  df-1o 6313  df-2o 6314  df-3o 6315
This theorem is referenced by:  4onn  6419  hash4  10572
  Copyright terms: Public domain W3C validator