| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2onn | Unicode version | ||
| Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
| Ref | Expression |
|---|---|
| 2onn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6476 |
. 2
| |
| 2 | 1onn 6579 |
. . 3
| |
| 3 | peano2 4632 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 df-1o 6475 df-2o 6476 |
| This theorem is referenced by: 3onn 6581 2ssom 6583 nn2m 6586 pw1fin 6972 nninfex 7188 infnninfOLD 7192 nnnninf 7193 isomnimap 7204 enomnilem 7205 fodjuf 7212 ismkvmap 7221 ismkvnex 7222 enmkvlem 7228 iswomnimap 7233 enwomnilem 7236 nninfdcinf 7238 nninfwlporlem 7240 nninfwlpoimlemg 7242 exmidonfinlem 7262 exmidfodomrlemr 7271 exmidfodomrlemrALT 7272 pw1ne3 7299 3nsssucpw1 7305 2onetap 7324 2omotaplemap 7326 2omotaplemst 7327 exmidmotap 7330 prarloclemarch2 7488 nq02m 7534 prarloclemlt 7562 prarloclemlo 7563 prarloclem3 7566 prarloclemn 7568 prarloclem5 7569 prarloclemcalc 7571 hash3 10907 unct 12669 xpsfrnel 12997 xpscf 13000 znidom 14223 znidomb 14224 2o01f 15651 pwle2 15653 pwf1oexmid 15654 subctctexmid 15655 0nninf 15658 nnsf 15659 nninfsellemdc 15664 nninfself 15667 nninffeq 15674 isomninnlem 15684 iswomninnlem 15703 ismkvnnlem 15706 |
| Copyright terms: Public domain | W3C validator |