Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2onn | Unicode version |
Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
Ref | Expression |
---|---|
2onn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6385 | . 2 | |
2 | 1onn 6488 | . . 3 | |
3 | peano2 4572 | . . 3 | |
4 | 2, 3 | ax-mp 5 | . 2 |
5 | 1, 4 | eqeltri 2239 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 csuc 4343 com 4567 c1o 6377 c2o 6378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-1o 6384 df-2o 6385 |
This theorem is referenced by: 3onn 6490 nn2m 6494 pw1fin 6876 nninfex 7086 infnninfOLD 7089 nnnninf 7090 isomnimap 7101 enomnilem 7102 fodjuf 7109 ismkvmap 7118 ismkvnex 7119 enmkvlem 7125 iswomnimap 7130 enwomnilem 7133 exmidonfinlem 7149 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 pw1ne3 7186 3nsssucpw1 7192 prarloclemarch2 7360 nq02m 7406 prarloclemlt 7434 prarloclemlo 7435 prarloclem3 7438 prarloclemn 7440 prarloclem5 7441 prarloclemcalc 7443 hash3 10726 unct 12375 2ssom 13684 2o01f 13876 pwle2 13878 pwf1oexmid 13879 subctctexmid 13881 0nninf 13884 nnsf 13885 nninfsellemdc 13890 nninfself 13893 nninffeq 13900 isomninnlem 13909 iswomninnlem 13928 ismkvnnlem 13931 |
Copyright terms: Public domain | W3C validator |