| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2onn | Unicode version | ||
| Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) | 
| Ref | Expression | 
|---|---|
| 2onn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-2o 6475 | 
. 2
 | |
| 2 | 1onn 6578 | 
. . 3
 | |
| 3 | peano2 4631 | 
. . 3
 | |
| 4 | 2, 3 | ax-mp 5 | 
. 2
 | 
| 5 | 1, 4 | eqeltri 2269 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 df-1o 6474 df-2o 6475 | 
| This theorem is referenced by: 3onn 6580 2ssom 6582 nn2m 6585 pw1fin 6971 nninfex 7187 infnninfOLD 7191 nnnninf 7192 isomnimap 7203 enomnilem 7204 fodjuf 7211 ismkvmap 7220 ismkvnex 7221 enmkvlem 7227 iswomnimap 7232 enwomnilem 7235 nninfdcinf 7237 nninfwlporlem 7239 nninfwlpoimlemg 7241 exmidonfinlem 7260 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 pw1ne3 7297 3nsssucpw1 7303 2onetap 7322 2omotaplemap 7324 2omotaplemst 7325 exmidmotap 7328 prarloclemarch2 7486 nq02m 7532 prarloclemlt 7560 prarloclemlo 7561 prarloclem3 7564 prarloclemn 7566 prarloclem5 7567 prarloclemcalc 7569 hash3 10905 unct 12659 xpsfrnel 12987 xpscf 12990 znidom 14213 znidomb 14214 2o01f 15641 pwle2 15643 pwf1oexmid 15644 subctctexmid 15645 0nninf 15648 nnsf 15649 nninfsellemdc 15654 nninfself 15657 nninffeq 15664 isomninnlem 15674 iswomninnlem 15693 ismkvnnlem 15696 | 
| Copyright terms: Public domain | W3C validator |