| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2onn | Unicode version | ||
| Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
| Ref | Expression |
|---|---|
| 2onn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6526 |
. 2
| |
| 2 | 1onn 6629 |
. . 3
| |
| 3 | peano2 4661 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 df-1o 6525 df-2o 6526 |
| This theorem is referenced by: 3onn 6631 2ssom 6633 nn2m 6636 1ndom2 6987 pw1fin 7033 nninfex 7249 infnninfOLD 7253 nnnninf 7254 isomnimap 7265 enomnilem 7266 fodjuf 7273 ismkvmap 7282 ismkvnex 7283 enmkvlem 7289 iswomnimap 7294 enwomnilem 7297 nninfdcinf 7299 nninfwlporlem 7301 nninfwlpoimlemg 7303 exmidonfinlem 7332 exmidfodomrlemr 7341 exmidfodomrlemrALT 7342 pw1ne3 7376 3nsssucpw1 7382 2onetap 7402 2omotaplemap 7404 2omotaplemst 7405 exmidmotap 7408 prarloclemarch2 7567 nq02m 7613 prarloclemlt 7641 prarloclemlo 7642 prarloclem3 7645 prarloclemn 7647 prarloclem5 7648 prarloclemcalc 7650 hash3 10995 hash2en 11025 unct 12928 xpsfrnel 13291 xpscf 13294 znidom 14534 znidomb 14535 upgrfi 15813 2o01f 16131 2omap 16132 2omapen 16133 pwle2 16137 pwf1oexmid 16138 subctctexmid 16139 0nninf 16143 nnsf 16144 nninfsellemdc 16149 nninfself 16152 nninffeq 16159 isomninnlem 16171 iswomninnlem 16190 ismkvnnlem 16193 |
| Copyright terms: Public domain | W3C validator |