| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2onn | Unicode version | ||
| Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
| Ref | Expression |
|---|---|
| 2onn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6561 |
. 2
| |
| 2 | 1onn 6664 |
. . 3
| |
| 3 | peano2 4686 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2302 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4461 df-iom 4682 df-1o 6560 df-2o 6561 |
| This theorem is referenced by: 3onn 6666 2ssom 6668 nn2m 6671 1ndom2 7022 pw1fin 7068 nninfex 7284 infnninfOLD 7288 nnnninf 7289 isomnimap 7300 enomnilem 7301 fodjuf 7308 ismkvmap 7317 ismkvnex 7318 enmkvlem 7324 iswomnimap 7329 enwomnilem 7332 nninfdcinf 7334 nninfwlporlem 7336 nninfwlpoimlemg 7338 exmidonfinlem 7367 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 pw1ne3 7411 3nsssucpw1 7417 2onetap 7437 2omotaplemap 7439 2omotaplemst 7440 exmidmotap 7443 prarloclemarch2 7602 nq02m 7648 prarloclemlt 7676 prarloclemlo 7677 prarloclem3 7680 prarloclemn 7682 prarloclem5 7683 prarloclemcalc 7685 hash3 11030 hash2en 11060 unct 13008 xpsfrnel 13372 xpscf 13375 znidom 14615 znidomb 14616 upgrfi 15896 2o01f 16317 2omap 16318 2omapen 16319 pwle2 16323 pwf1oexmid 16324 subctctexmid 16325 0nninf 16329 nnsf 16330 nninfsellemdc 16335 nninfself 16338 nninffeq 16345 isomninnlem 16357 iswomninnlem 16376 ismkvnnlem 16379 |
| Copyright terms: Public domain | W3C validator |