| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2onn | Unicode version | ||
| Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
| Ref | Expression |
|---|---|
| 2onn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6484 |
. 2
| |
| 2 | 1onn 6587 |
. . 3
| |
| 3 | peano2 4632 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 df-1o 6483 df-2o 6484 |
| This theorem is referenced by: 3onn 6589 2ssom 6591 nn2m 6594 pw1fin 6980 nninfex 7196 infnninfOLD 7200 nnnninf 7201 isomnimap 7212 enomnilem 7213 fodjuf 7220 ismkvmap 7229 ismkvnex 7230 enmkvlem 7236 iswomnimap 7241 enwomnilem 7244 nninfdcinf 7246 nninfwlporlem 7248 nninfwlpoimlemg 7250 exmidonfinlem 7274 exmidfodomrlemr 7283 exmidfodomrlemrALT 7284 pw1ne3 7315 3nsssucpw1 7321 2onetap 7340 2omotaplemap 7342 2omotaplemst 7343 exmidmotap 7346 prarloclemarch2 7505 nq02m 7551 prarloclemlt 7579 prarloclemlo 7580 prarloclem3 7583 prarloclemn 7585 prarloclem5 7586 prarloclemcalc 7588 hash3 10924 unct 12686 xpsfrnel 13048 xpscf 13051 znidom 14291 znidomb 14292 2o01f 15749 2omap 15750 2omapen 15751 pwle2 15753 pwf1oexmid 15754 subctctexmid 15755 0nninf 15759 nnsf 15760 nninfsellemdc 15765 nninfself 15768 nninffeq 15775 isomninnlem 15787 iswomninnlem 15806 ismkvnnlem 15809 |
| Copyright terms: Public domain | W3C validator |