| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2onn | Unicode version | ||
| Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
| Ref | Expression |
|---|---|
| 2onn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6503 |
. 2
| |
| 2 | 1onn 6606 |
. . 3
| |
| 3 | peano2 4643 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4418 df-iom 4639 df-1o 6502 df-2o 6503 |
| This theorem is referenced by: 3onn 6608 2ssom 6610 nn2m 6613 pw1fin 7007 nninfex 7223 infnninfOLD 7227 nnnninf 7228 isomnimap 7239 enomnilem 7240 fodjuf 7247 ismkvmap 7256 ismkvnex 7257 enmkvlem 7263 iswomnimap 7268 enwomnilem 7271 nninfdcinf 7273 nninfwlporlem 7275 nninfwlpoimlemg 7277 exmidonfinlem 7301 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 pw1ne3 7342 3nsssucpw1 7348 2onetap 7367 2omotaplemap 7369 2omotaplemst 7370 exmidmotap 7373 prarloclemarch2 7532 nq02m 7578 prarloclemlt 7606 prarloclemlo 7607 prarloclem3 7610 prarloclemn 7612 prarloclem5 7613 prarloclemcalc 7615 hash3 10958 hash2en 10988 unct 12813 xpsfrnel 13176 xpscf 13179 znidom 14419 znidomb 14420 2o01f 15931 2omap 15932 2omapen 15933 pwle2 15935 pwf1oexmid 15936 subctctexmid 15937 0nninf 15941 nnsf 15942 nninfsellemdc 15947 nninfself 15950 nninffeq 15957 isomninnlem 15969 iswomninnlem 15988 ismkvnnlem 15991 |
| Copyright terms: Public domain | W3C validator |