ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3onn GIF version

Theorem 3onn 6513
Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
3onn 3o ∈ ω

Proof of Theorem 3onn
StepHypRef Expression
1 df-3o 6409 . 2 3o = suc 2o
2 2onn 6512 . . 3 2o ∈ ω
3 peano2 4588 . . 3 (2o ∈ ω → suc 2o ∈ ω)
42, 3ax-mp 5 . 2 suc 2o ∈ ω
51, 4eqeltri 2248 1 3o ∈ ω
Colors of variables: wff set class
Syntax hints:  wcel 2146  suc csuc 4359  ωcom 4583  2oc2o 6401  3oc3o 6402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-uni 3806  df-int 3841  df-suc 4365  df-iom 4584  df-1o 6407  df-2o 6408  df-3o 6409
This theorem is referenced by:  4onn  6514  hash4  10762
  Copyright terms: Public domain W3C validator