![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3onn | GIF version |
Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
3onn | ⊢ 3o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 6473 | . 2 ⊢ 3o = suc 2o | |
2 | 2onn 6576 | . . 3 ⊢ 2o ∈ ω | |
3 | peano2 4628 | . . 3 ⊢ (2o ∈ ω → suc 2o ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 2o ∈ ω |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 3o ∈ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 suc csuc 4397 ωcom 4623 2oc2o 6465 3oc3o 6466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-suc 4403 df-iom 4624 df-1o 6471 df-2o 6472 df-3o 6473 |
This theorem is referenced by: 4onn 6578 hash4 10888 |
Copyright terms: Public domain | W3C validator |