| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3onn | GIF version | ||
| Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| 3onn | ⊢ 3o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3o 6476 | . 2 ⊢ 3o = suc 2o | |
| 2 | 2onn 6579 | . . 3 ⊢ 2o ∈ ω | |
| 3 | peano2 4631 | . . 3 ⊢ (2o ∈ ω → suc 2o ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 2o ∈ ω |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 3o ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 suc csuc 4400 ωcom 4626 2oc2o 6468 3oc3o 6469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 df-1o 6474 df-2o 6475 df-3o 6476 |
| This theorem is referenced by: 4onn 6581 hash4 10906 |
| Copyright terms: Public domain | W3C validator |