| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3onn | GIF version | ||
| Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| 3onn | ⊢ 3o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3o 6562 | . 2 ⊢ 3o = suc 2o | |
| 2 | 2onn 6665 | . . 3 ⊢ 2o ∈ ω | |
| 3 | peano2 4686 | . . 3 ⊢ (2o ∈ ω → suc 2o ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 2o ∈ ω |
| 5 | 1, 4 | eqeltri 2302 | 1 ⊢ 3o ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 suc csuc 4455 ωcom 4681 2oc2o 6554 3oc3o 6555 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4461 df-iom 4682 df-1o 6560 df-2o 6561 df-3o 6562 |
| This theorem is referenced by: 4onn 6667 hash4 11031 |
| Copyright terms: Public domain | W3C validator |