Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3onn | GIF version |
Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
3onn | ⊢ 3o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 6386 | . 2 ⊢ 3o = suc 2o | |
2 | 2onn 6489 | . . 3 ⊢ 2o ∈ ω | |
3 | peano2 4572 | . . 3 ⊢ (2o ∈ ω → suc 2o ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 2o ∈ ω |
5 | 1, 4 | eqeltri 2239 | 1 ⊢ 3o ∈ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 suc csuc 4343 ωcom 4567 2oc2o 6378 3oc3o 6379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-1o 6384 df-2o 6385 df-3o 6386 |
This theorem is referenced by: 4onn 6491 hash4 10727 |
Copyright terms: Public domain | W3C validator |