![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3onn | GIF version |
Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
3onn | ⊢ 3o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 6199 | . 2 ⊢ 3o = suc 2o | |
2 | 2onn 6296 | . . 3 ⊢ 2o ∈ ω | |
3 | peano2 4425 | . . 3 ⊢ (2o ∈ ω → suc 2o ∈ ω) | |
4 | 2, 3 | ax-mp 7 | . 2 ⊢ suc 2o ∈ ω |
5 | 1, 4 | eqeltri 2161 | 1 ⊢ 3o ∈ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1439 suc csuc 4203 ωcom 4420 2oc2o 6191 3oc3o 6192 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3965 ax-nul 3973 ax-pow 4017 ax-pr 4047 ax-un 4271 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2624 df-dif 3004 df-un 3006 df-in 3008 df-ss 3015 df-nul 3290 df-pw 3437 df-sn 3458 df-pr 3459 df-uni 3662 df-int 3697 df-suc 4209 df-iom 4421 df-1o 6197 df-2o 6198 df-3o 6199 |
This theorem is referenced by: 4onn 6298 hash4 10285 |
Copyright terms: Public domain | W3C validator |