Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3onn | GIF version |
Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
3onn | ⊢ 3o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 6409 | . 2 ⊢ 3o = suc 2o | |
2 | 2onn 6512 | . . 3 ⊢ 2o ∈ ω | |
3 | peano2 4588 | . . 3 ⊢ (2o ∈ ω → suc 2o ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 2o ∈ ω |
5 | 1, 4 | eqeltri 2248 | 1 ⊢ 3o ∈ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2146 suc csuc 4359 ωcom 4583 2oc2o 6401 3oc3o 6402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-suc 4365 df-iom 4584 df-1o 6407 df-2o 6408 df-3o 6409 |
This theorem is referenced by: 4onn 6514 hash4 10762 |
Copyright terms: Public domain | W3C validator |