| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxr | Unicode version | ||
| Description: Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| elxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 8181 |
. . 3
| |
| 2 | 1 | eleq2i 2296 |
. 2
|
| 3 | elun 3345 |
. 2
| |
| 4 | pnfex 8196 |
. . . . 5
| |
| 5 | mnfxr 8199 |
. . . . . 6
| |
| 6 | 5 | elexi 2812 |
. . . . 5
|
| 7 | 4, 6 | elpr2 3688 |
. . . 4
|
| 8 | 7 | orbi2i 767 |
. . 3
|
| 9 | 3orass 1005 |
. . 3
| |
| 10 | 8, 9 | bitr4i 187 |
. 2
|
| 11 | 2, 3, 10 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-un 4523 ax-cnex 8086 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-pnf 8179 df-mnf 8180 df-xr 8181 |
| This theorem is referenced by: xrnemnf 9969 xrnepnf 9970 xrltnr 9971 xrltnsym 9985 xrlttr 9987 xrltso 9988 xrlttri3 9989 nltpnft 10006 npnflt 10007 ngtmnft 10009 nmnfgt 10010 xrrebnd 10011 xnegcl 10024 xnegneg 10025 xltnegi 10027 xrpnfdc 10034 xrmnfdc 10035 xnegid 10051 xaddcom 10053 xaddid1 10054 xnegdi 10060 xleadd1a 10065 xltadd1 10068 xlt2add 10072 xsubge0 10073 xposdif 10074 xleaddadd 10079 qbtwnxr 10472 xrmaxiflemcl 11751 xrmaxifle 11752 xrmaxiflemab 11753 xrmaxiflemlub 11754 xrmaxltsup 11764 xrmaxadd 11767 xrbdtri 11782 isxmet2d 15016 blssioo 15221 |
| Copyright terms: Public domain | W3C validator |